HIC-1 (43-Y): sc-100999

The Power to Question

BACKGROUND

Hypermethylated in cancer (HIC-1) was originally identified as a target of p53induced gene expression. HIC-1 is deleted in the genetic disorder Miller-Dieker syndrome (MDS), and the expression of HIC-1 is also frequently suppressed in leukemia and various cancers due to the hypermethylation of specific DNA regions and the resulting transcriptional silencing. These and other studies indicate that HIC-1 acts as a putative tumor suppressor protein that mediates transcriptional repression. HIC-1 is ubiquitously expressed in adult tissues and its structure is defined by five zinc fingers and an N-terminal broad complex POZ (or BTB) domain. The BTB/POZ domain mediates homomeric and heteromeric POZ-POZ interactions and is common to transcriptional regulators involved in chromatin modeling. In several BTB/POZ containing proteins, including Bcl-6 and the promyelocytic leukemia zinc finger (PLZF) oncoprotein, this domain interacts with the SMRT/N-CoR-mSin3A HDAC complex and is directly involved in repressing and silencing gene transcription. When this domain is deleted, as with the oncogenic PLZF-RAR chimera of promyelocytic leukemias, this transcriptional repression is attenuated. Conversely, HIC-1 does not interact with components of the HDAC complex, suggesting that HIC-1-induced transcriptional repression is unassociated with the POZ/BTB domain.

REFERENCES

- Wales, M.M., et al. 1995. p53 activates expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3. Nat. Med. 1: 570-577.
- 2. Ahmad, K.F., et al. 1998. Crystal structure of the BTB domain from PLZF. Proc. Natl. Acad. Sci. USA 95: 12123-12128.
- 3. David, G., et al. 1998. Histone deacetylase associated with mSin3A mediates repression by the acute promyelocytic leukemia-associated PLZF protein. Oncogene 16: 2549-2556.
- 4. Huynh, K.D., et al. 1998. The Bcl-6 POZ domain and other POZ domains interact with the corepressors N-CoR and SMRT. Oncogene 17: 2473-2484.
- 5. Wong, C.W., et al. 1998. Components of the SMRT corepressor complex exhibit distinctive interactions with the POZ domain oncoproteins PLZF, PLZF-RAR α , and Bcl-6. J. Biol. Chem. 273: 27695-27702.
- 6. Guerardel, C., et al. 1999. Evolutionary divergence in the broad complex, tramtrack and BRIC a brac/POX viruses and zinc finger domain from the candidate tumor suppressor gene hypermethylated in cancer. FEBS Lett. 451: 253-256.
- 7. Deltour, S., et al. 1999. Recruitment of SMRT/N-CoR-mSin3A-HDAC-repressing complexes is not a general mechanism for BTB/POZ transcriptional repressors: the case of HIC-1 and γ FBP-B. Proc. Natl. Acad. Sci. USA 96: 14831-14836.
- 8. Kelly, K.F., et al. 2006. POZ for effect—POZ-ZF transcription factors in cancer and development. Trends Cell Biol. 16: 578-587.
- 9. Mondal, A.M., et al. 2006. Identification and functional characterization of a novel unspliced transcript variant of HIC-1 in human cancer cells exposed to adverse growth conditions. Cancer Res. 66: 10466-10477.

CHROMOSOMAL LOCATION

Genetic locus: HIC1 (human) mapping to 17p13.3; Hic1 (mouse) mapping to 11 B5.

SOURCE

HIC-1 (43-Y) is a mouse monoclonal antibody raised against recombinant HIC-1 of human origin.

PRODUCT

Each vial contains 100 μg lgG_{2b} in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

APPLICATIONS

HIC-1 (43-Y) is recommended for detection of HIC-1 of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1-2 μ g per 100-500 μ g of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

Suitable for use as control antibody for HIC-1 siRNA (h): sc-37712, HIC-1 siRNA (m): sc-37713, HIC-1 shRNA Plasmid (h): sc-37712-SH, HIC-1 shRNA Plasmid (m): sc-37713-SH, HIC-1 shRNA (h) Lentiviral Particles: sc-37712-V and HIC-1 shRNA (m) Lentiviral Particles: sc-37713-V.

Molecular Weight of HIC-1: 76 kDa.

Positive Controls: Jurkat whole cell lysate: sc-2204 or KNRK whole cell lysate: sc-2214.

RECOMMENDED SECONDARY REAGENTS

To ensure optimal results, the following support (secondary) reagents are recommended: 1) Western Blotting: use goat anti-mouse IgG-HRP: sc-2005 (dilution range: 1:2000-1:32,000) or Cruz Marker™ compatible goat anti-mouse IgG-HRP: sc-2031 (dilution range: 1:2000-1:5000), Cruz Marker™ Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: sc-2333 and Western Blotting Luminol Reagent: sc-2048. 2) Immunoprecipitation: use Protein A/G PLUS-Agarose: sc-2003 (0.5 ml agarose/2.0 ml). 3) Immunofluorescence: use goat anti-mouse IgG-FITC: sc-2010 (dilution range: 1:100-1:400) or goat anti-mouse IgG-TR: sc-2781 (dilution range: 1:100-1:400) with UltraCruz™ Mounting Medium: sc-24941.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 **Europe** +00800 4573 8000 49 6221 4503 0 **www.scbt.com**