Pepsin A (2F5): sc-101405

The Power to Question

BACKGROUND

Pepsin is one of the main proteolytic enzymes secreted by the gastric mucosa. Pepsin consists of a single polypeptide chain and arises from its precursor, pepsinogen, by removal of a 41 amino acid segment from the N-terminus. Pepsinogen is synthesized in the stomach lining, and hydrochloric acid, also produced by the gastric mucosa, is necessary to convert the inactive enzyme and to maintain the optimum acidity (pH 1-3) for Pepsin function. Pepsin is particularly effective in cleaving peptide bonds involving aromatic amino acids. Pepsin shows extremely broad specificity; although bonds involving phenylalanine and leucine are preferred, many others are also cleaved to some extent. Pepsin A is a member of the subfamily A1 within the Pepsin family and is the predominant endopeptidase in the gastric juice of vertebrates. Pepsin A is inhibited by ovUS-1, a uterine serpin.

REFERENCES

- Carles, C. and Martin, P. 1985. Kinetic study of the action of bovine chymosin and Pepsin A on bovine κ-casein. Arch. Biochem. Biophys. 242: 411-416.
- Okoniewska, M., Tanaka, T. and Yada, R.Y. 1999. The role of the flap residue, Threonine 77, in the activation and catalytic activity of Pepsin A. Protein Eng. 12: 55-61.
- 3. Kageyama, T. 2004. Role of S'1 loop residues in the substrate specificities of Pepsin A and chymosin. Biochemistry 43: 15122-15130.
- Akkerdaas, J.H., Wensing, M., Asero, R., Fernandez Rivas, M., Rivas, M.F., Knulst, A.C., Bolhaar, S., Hefle, S.L., Aalberse, R.C. and van Ree, R. 2005. IgE binding to Pepsin-digested food extracts. Int. Arch. Allergy Immunol. 138: 203-208.
- Ibrahim, H.R., Inazaki, D., Abdou, A., Aoki, T. and Kim, M. 2005. Processing
 of lysozyme at distinct loops by Pepsin: a novel action for generating multiple antimicrobial peptide motifs in the newborn stomach. Biochim.
 Biophys. Acta 1726: 102-114.
- Tagliazucchi, D., Verzelloni, E. and Conte, A. 2005. Effect of some phenolic compounds and beverages on Pepsin activity during simulated gastric digestion. J. Agric. Food Chem. 53: 8706-8713.
- Schimek, E.M., Zwölfer, B., Briza, P., Jahn-Schmid, B., Vogel, L., Vieths, S., Ebner, C. and Bohle, B. 2005. Gastrointestinal digestion of Bet v 1-homologous food allergens destroys their mediator-releasing, but not T cellactivating, capacity. J. Allergy Clin. Immunol. 116: 1327-13233.
- 8. Schreiber, S., Bücker, R., Groll, C., Azevedo-Vethacke, M., Scheid, P., Gatermann, S., Josenhans, C. and Suerbaum, S. 2005. Gastric antibacterial efficiency is different for Pepsin A and C. Arch. Microbiol. 184: 335-340.
- Simó, C., González, R., Barbas, C. and Cifuentes, A. 2005. Combining peptide modeling and capillary electrophoresis-mass spectrometry for characterization of enzymes cleavage patterns: recombinant versus natural bovine Pepsin A. Anal. Chem. 77: 7709-7716.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

SOURCE

Pepsin A (2F5) is a mouse monoclonal antibody raised against Pepsin A of human origin.

PRODUCT

Each vial contains 100 $\mu g \; lg G_{2a}$ in 1.0 ml PBS with < 0.1% sodium azide and 0.1% gelatin.

APPLICATIONS

Pepsin A (2F5) is recommended for detection of Pepsin A and Pepsinogen A of human origin by solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

Suitable for use as control antibody for Pepsin A siRNA (h): sc-61317; and as shRNA Plasmid control antibody for Pepsin A shRNA Plasmid (h): sc-61317-SH.

Molecular Weight of Pepsin A: 41.5 kDa.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com