SANTA CRUZ BIOTECHNOLOGY, INC.

p-ERα (Ser 106): sc-101674

BACKGROUND

Estrogen receptor α (ER α , ER, ESR, ESRA, Era, NR3A1, estrogen receptor 1) is a ligand-activated transcription factor composed of several domains important for hormone binding, DNA binding and activation of transcription. Alternative splicing results in several ER α mRNA transcripts, which differ primarily in their 5' untranslated regions. ER α undergoes phosphorylation in response to estradiol binding. Human ER α is predominately phosphorylated on Ser 118 and, to a lesser extent, on Ser 104 and Ser 106. In response to activation of the mitogen-activated protein kinase pathway, phosphorylation occurs on Ser 118 and Ser 167. These serine residues are all located within the activation function 1 region of the N-terminal domain of ER α . In contrast, activation of protein kinase A increases the phosphorylation of Ser 236, which is located in the DNA-binding domain. Src kinase-dependent Tyr 537 phosphorylation may enhance estrogen binding to ER α . Mutation of Tyr 537 of the human ER α produces receptors having a range of constitutive activity.

REFERENCES

- Arnold, S.F., et al. 1995. Phosphorylation of Tyrosine 537 on the human estrogen receptor is required for binding to an estrogen response element. J. Biol. Chem. 270: 30205-30212.
- Weis, K.E., et al. 1996. Constitutively active human estrogen receptors containing amino acid substitutions for Tyrosine 537 in the receptor protein. Mol. Endocrinol. 10: 1388-1398.
- Arnold, S.F., et al. 1997. Estradiol-binding mechanism and binding capacity of the human estrogen receptor is regulated by tyrosine phosphorylation. Mol. Endocrinol. 11: 48-53.
- Joel, P.B., et al. 1998. pp90 Rsk-1 regulates estrogen receptor-mediated transcription through phosphorylation of Ser 167. Mol. Cell. Biol. 18: 1978-1984.

CHROMOSOMAL LOCATION

Genetic locus: ESR1 (human) mapping to 6q25.1; Esr1 (mouse) mapping to 10 A1.

SOURCE

p-ER α (Ser 106) is a rabbit polyclonal antibody raised against a short amino acid sequence containing Ser 106 phosphorylated ER α of human origin.

PRODUCT

Each vial contains 100 μg IgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

STORAGE

Store at 4° C, **D0 NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

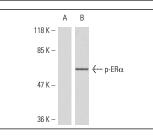
For research use only, not for use in diagnostic procedures.

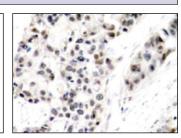
APPLICATIONS

p-ER α (Ser 106) is recommended for detection of Ser 106 phosphorylated ER α of human origin and correspondingly phosphorylated Ser 110 of mouse origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml of cell lysate)], immunofluorescence and immunohistochemistry (including paraffin-embedded sections) (starting dilution 1:50, dilution range 1:50-1:500).

Suitable for use as control antibody for ER α siRNA (h): sc-29305, ER α siRNA (m): sc-29306, ER α shRNA Plasmid (h): sc-29305-SH, ER α shRNA Plasmid (m): sc-29306-SH, ER α shRNA (h) Lentiviral Particles: sc-29305-V and ER α shRNA (m) Lentiviral Particles: sc-29306-V.

Molecular Weight of p-ER α long isoform: 66 kDa.


Molecular Weight of p-ER α short isoform: 54 kDa.


Molecular Weight of ER46: 48 kDa.

Molecular Weight of ER36: 36 kDa.

Positive Controls: MCF7 whole cell lysate: sc-2206.

DATA

p-ER α (Ser 106): sc-101674. Western blot analysis of phosphorylated ER α expression in untreated (**A**) and estradiol-treated (**B**) MCF7 whole cell lysates.

 $p\text{-}ER\alpha$ (Ser 106): sc-101674. Immunoperoxidase staining of formalin-fixed, paraffin-embedded human breast carcinoma tissue showing nuclear localization.

SELECT PRODUCT CITATIONS

 Wang, Y.C., et al. 2011. Estrogen suppresses metastasis in rat hepatocellular carcinoma through decreasing interleukin-6 and hepatocyte growth factor expression. Inflammation 35: 143-149.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.