p-lkB- α (Ser 32/36): sc-101713

The Power to Question

BACKGROUND

On the basis of both functional and structural considerations, members of the lkB family of proteins can be divided into four groups. The first of these groups, $l\kappa B-\alpha$, includes the avian protein pp40 and the mammalian MAD-3, both of which inhibit binding of p50-p65 NFkB complex or Rel protein to their cognate binding sites but do not inhibit the binding of p50 homodimer to κB sites, suggesting that the $l\kappa B$ - α family binds to the p65 subunit of p50-p65 heterocomplex through Ankyrin repeats. The second member of the $l\kappa B$ family is represented by a protein designated $l\kappa B$ - β . The third group of $l\kappa B$ proteins is represented by $l\kappa B$ - γ , a protein identical in sequence with the C-terminal domain of the p110 precursor of NFκB p50 and expressed predominantly in lymphoid cells. An additional IkB family member has been identified as $l\kappa B$ - ϵ , a protein which has several phosphorylated forms and is primarily found complexed with RelA and/or c-Rel. There is a consensus phosphorylation site for CKII between residues 269-299, and within this range there are three phosphorylation sites that important for constitutive phosphorylation and intrinsic stability of $l\kappa B-\alpha$: Ser 283, Thr 291 and Thr 299.

CHROMOSOMAL LOCATION

Genetic locus: NFKBIA (human) mapping to 14q13.2; Nfkbia (mouse) mapping to 12 C1.

SOURCE

p-l κ B- α (Ser 32/36) is a rabbit polyclonal antibody raised against a short amino acid sequence containing Ser 32/36 phosphorylated l κ B- α of human origin.

PRODUCT

Each vial contains 100 μg lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

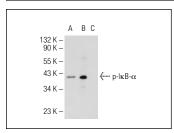
APPLICATIONS

p-l κ B- α (Ser 32/36) is recommended for detection of Ser 32 and Ser 36 dually phosphorylated l κ B- α of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1-2 μ g per 100-500 μ g of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and immunohistochemistry (including paraffin-embedded sections) (starting dilution 1:50, dilution range 1:50-1:500).

Suitable for use as control antibody for $I\kappa B-\alpha$ siRNA (h): sc-29360, $I\kappa B-\alpha$ siRNA (m): sc-29361, $I\kappa B-\alpha$ shRNA Plasmid (h): sc-29360-SH, $I\kappa B-\alpha$ shRNA Plasmid (m): sc-29361-SH, $I\kappa B-\alpha$ shRNA (h) Lentiviral Particles: sc-29360-V and $I\kappa B-\alpha$ shRNA (m) Lentiviral Particles: sc-29361-V.

Molecular Weight of p-l κ B- α : 41 kDa.

Positive Controls: HEK293 whole cell lysate: sc-45136 or TNF α treated HEK293 whole cell lysate.


STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

DATA

p-lκB-α (Ser 32/36): sc-101713. Western blot analysis of lκB-α phosphorylation in untreated (**A**), TNFα treated (**B**) and TNFα and lambda protein phosphatase (sc-200312A) treated ($\mathbb C$) HEK293 whole cell lysates.

 $p\text{-l}\kappa B\text{-}\alpha$ (Ser 32/36): sc-101713. Immunoperoxidase staining of formalin-fixed, paraffin-embedded human breast carcinoma tissue showing cytoplasmic staining.

SELECT PRODUCT CITATIONS

- 1. Petro, J.B., et al. 2001. Phospholipase $C-\gamma$ 2 couples Bruton's tyrosine kinase to the NF κ B signaling pathway in B lymphocytes. J. Biol. Chem. 276: 1715-1719.
- Ji, C., et al. 2001. IκB kinase, a molecular target for inhibition by 4-hydroxy-2-nonenal. J. Biol. Chem. 276: 18223-18228.
- 3. Ghosh, S., et al. 2011. Altered glutathione homeostasis in heart augments cardiac lipotoxicity associated with diet-induced obesity in mice. J. Biol. Chem. 286: 42483-42493.
- Dragoni, S., et al. 2011. Vascular endothelial growth factor stimulates endothelial colony forming cells proliferation and tubulogenesis by inducing oscillations in intracellular Ca²⁺ concentration. Stem Cells 29: 1898-1907.
- Donia, M., et al. 2011. *In vitro* and *in vivo* anticancer action of Saquinavir-NO, a novel nitric oxide-derivative of the protease inhibitor saquinavir, on hormone resistant prostate cancer cells. Cell Cycle 10: 492-499.
- 6. Ji, R., et al. 2012. Prostanoid EP_1 receptors mediate up-regulation of the orphan nuclear receptor Nurr1 by cAMP-independent activation of protein kinase A, CREB and NF κ B. Br. J. Pharmacol. 166: 1033-1046.
- 7. Ortis, F., et al. 2012. Differential usage of NF κ B activating signals by IL-1 β and TNF- α in pancreatic β cells. FEBS Lett. 586: 984-989.
- 8. Radovic, J., et al. 2012. Cell-type dependent response of melanoma cells to aloe emodin. Food Chem. Toxicol. 50: 3181-3189.
- Wang, L. and Ning, S. 2013. Interferon regulatory factor 4 is activated through c-Src-mediated tyrosine phosphorylation in virus-transformed cells. J. Virol. 87: 9672-9679.

Try **p-I\kappaB-\alpha (B-9): sc-8404**, our highly recommended monoclonal aternative to p-I κ B- α (Ser 32/36). Also, for AC, HRP, FITC, PE, Alexa Fluor[®] 488 and Alexa Fluor[®] 647 conjugates, see **p-I\kappaB-\alpha (B-9): sc-8404**.