ZNF497 (L-19): sc-102229

The Power to Question

BACKGROUND

Zinc finger proteins contain DNA-binding domains and have a wide variety of functions, most of which encompass some form of transcriptional activation or repression. As a member of the Krüppel C_2H_2 -type zinc finger protein family, ZNF497 (zinc finger protein 497) is a 498 amino acid protein containing fourteen C_2H_2 -type zinc fingers. Localized to the nucleus, ZNF497 is thought to be involved in transcriptional regulation. The gene encoding ZNF497 localizes to chromosome 19, which is recognized for having the greatest gene density of the human chromosomes. Chromosome 19 is the genetic home for a number of immunoglobulin superfamily members including the killer cell and leukocyte lg-like receptors, a number of ICAMs, the CEACAM and PSG family and Fc receptors (FcRs). Key genes for eye color and hair color also map to chromosome 19.

REFERENCES

- Payre, F. and Vincent, A. 1988. Finger proteins and DNA-specific recognition: distinct patterns of conserved amino acids suggest different evolutionary modes. FEBS Lett. 234: 245-250.
- Berg, J.M. 1988. Proposed structure for the zinc-binding domains from transcription factor IIIA and related proteins. Proc. Natl. Acad. Sci. USA 85: 99-102.
- 3. Thiesen, H.J. 1990. Multiple genes encoding zinc finger domains are expressed in human T cells. New Biol. 2: 363-374.
- Rosenfeld, R. and Margalit, H. 1993. Zinc fingers: conserved properties that can distinguish between spurious and actual DNA-binding motifs. J. Biomol. Struct. Dyn. 11: 557-570.
- Trettel, F., et al. 2000. A fine physical map of the CACNA1A gene region on 19p13.1-p13.2 chromosome. Gene 241: 45-50.
- Moodie, S.J., et al. 2002. Analysis of candidate genes on chromosome 19 in coeliac disease: an association study of the KIR and LILR gene clusters. Eur. J. Immunogenet. 29: 287-291.
- 7. Leem, S.H., et al. 2004. Closing the gaps on human chromosome 19 revealed genes with a high density of repetitive tandemly arrayed elements. Genome Res. 14: 239-246.

CHROMOSOMAL LOCATION

Genetic locus: ZNF497 (human) mapping to 19q13.43.

SOURCE

ZNF497 (L-19) is a purified rabbit polyclonal antibody raised against ZNF497 of human origin.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

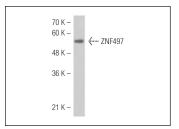
PRODUCT

Each vial contains 100 μg IgG in 1.0 ml PBS with <0.1% sodium azide, 0.1% gelatin and <0.02% sucrose.

APPLICATIONS

ZNF497 (L-19) is recommended for detection of ZNF497 of human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml of cell lysate)] and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

Suitable for use as control antibody for ZNF497 siRNA (h): sc-97927, ZNF497 shRNA Plasmid (h): sc-97927-SH and ZNF497 shRNA (h) Lentiviral Particles: sc-97927-V.


Molecular Weight of ZNF497: 55 kDa.

Positive Controls: Hep G2 cell lysate: sc-2227.

RECOMMENDED SECONDARY REAGENTS

To ensure optimal results, the following support (secondary) reagents are recommended: 1) Western Blotting: use goat anti-rabbit IgG-HRP: sc-2004 (dilution range: 1:2000-1:100,000) or Cruz Marker™ compatible goat anti-rabbit IgG-HRP: sc-2030 (dilution range: 1:2000-1:5000), Cruz Marker™ Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: sc-2333 and Western Blotting Luminol Reagent: sc-2048. 2) Immunoprecipitation: use Protein A/G PLUS-Agarose: sc-2003 (0.5 ml agarose/2.0 ml).

DATA

ZNF497 (L-19): sc-102229. Western blot analysis of ZNF497 expression in Hep G2 whole cell lysate.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 Fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com