ATP5I (Y-15): sc-104099

The Power to Question

BACKGROUND

Mitochondrial ATP synthases (ATPases) transduce the energy contained in membrane electrochemical proton gradients into the energy required for synthesis of high-energy phosphate bonds. ATPases contain two linked complexes: F_1 , the hydrophilic catalytic core; and F_0 , the membrane-embedded protein channel. The two complexes are linked by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F_1 is coupled, via a rotary mechanism of the central stalk subunits, with proton translocation across the membrane. ATP5I, also known as mitochondrial ATP synthase subunit E or ATP5K, is a 69 amino acid protein member of the ATPase E subunit family. Localized to the inner membrane of the mitochondria, ATP5I is a part of the F_0 complex.

REFERENCES

- Prescott, M., Bush, N.C., Nagley, P. and Devenish, R.J. 1994. Properties
 of yeast cells depleted of the OSCP subunit of mitochondrial ATP synthase
 by regulated expression of the ATP5 gene. Biochem. Mol. Biol. Int. 34:
 789-799.
- Maak, S., Jaesert, S., Neumann, K., Yerle, M. and von Lengerken, G. 2001. Rapid communication: chromosomal localization and partial cDNA sequence of the porcine ATP synthase, H+ transporting, mitochondrial F₀ complex, subunit E (ATP5I) gene. J. Anim. Sci. 79: 1352-1353.
- Ying, H., Yu, Y. and Xu, Y. 2001. Antisense of ATP synthase subunit E inhibits the growth of human hepatocellular carcinoma cells. Oncol. Res. 12: 485-490.
- 4. Carbajo, R.J., Kellas, F.A., Runswick, M.J., Montgomery, M.G., Walker, J.E. and Neuhaus, D. 2005. Structure of the F_1 -binding domain of the stator of bovine F_1F_0 -ATPase and how it binds an α -subunit. J. Mol. Biol. 351: 824-838.
- Dunnick, J., Blackshear, P., Kissling, G., Cunningham, M., Parker, J. and Nyska, A. 2006. Critical pathways in heart function: bis(2-chloroethoxy) methane-induced heart gene transcript change in F344 rats. Toxicol. Pathol. 34: 348-356.
- Ackerman, S.H. and Tzagoloff, A. 2007. Methods to determine the status of mitochondrial ATP synthase assembly. Methods Mol. Biol. 372: 363-377.
- 7. Grover, G.J., Marone, P.A., Koetzner, L. and Seto-Young, D. 2008. Energetic signalling in the control of mitochondrial F_1F_0 ATP synthase activity in health and disease. Int. J. Biochem. Cell Biol. 40: 2698-2701.
- Scanlon, J.A., Al-Shawi, M.K. and Nakamoto, R.K. 2008. A rotor-stator cross-link in the F₁-ATPase blocks the rate-limiting step of rotational catalysis. J. Biol. Chem. 283: 26228-26240.
- 9. Zheng, Y.Z., Berg, K.B. and Foster, L.J. 2009. Mitochondria do not contain lipid rafts and lipid rafts do not contain mitochondrial proteins. J. Lipid Res. E-published.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

CHROMOSOMAL LOCATION

Genetic locus: ATP5I (human) mapping to 4p16.3; Atp5k (mouse) mapping to 5 F.

SOURCE

ATP5I (Y-15) is an affinity purified goat polyclonal antibody raised against a peptide mapping within an internal region of ATP5I of human origin.

PRODUCT

Each vial contains 200 μg IgG in 1.0 ml of PBS with <0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-104099 P, (100 μ g peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

APPLICATIONS

ATP5I (Y-15) is recommended for detection of ATP5I of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000); non cross-reactive with other ATP5 family members.

Suitable for use as control antibody for ATP5I siRNA (h): sc-88980, ATP5I siRNA (m): sc-105106, ATP5I shRNA Plasmid (h): sc-88980-SH, ATP5I shRNA Plasmid (m): sc-105106-SH, ATP5I shRNA (h) Lentiviral Particles: sc-88980-V and ATP5I shRNA (m) Lentiviral Particles: sc-105106-V.

Molecular Weight of ATP5I: 8 kDa.

RECOMMENDED SECONDARY REAGENTS

To ensure optimal results, the following support (secondary) reagents are recommended: 1) Western Blotting: use donkey anti-goat IgG-HRP: sc-2020 (dilution range: 1:2000-1:100,000) or Cruz Marker™ compatible donkey anti-goat IgG-HRP: sc-2033 (dilution range: 1:2000-1:5000), Cruz Marker™ Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: sc-2333 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use donkey anti-goat IgG-FITC: sc-2024 (dilution range: 1:100-1:400) or donkey anti-goat IgG-TR: sc-2783 (dilution range: 1:100-1:400) with UltraCruz™ Mounting Medium: sc-24941.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com