α_{1D} -AR (H-142): sc-10721

The Power to Question

BACKGROUND

 $\alpha_{1D}\text{-adrenergic}$ receptors $(\alpha_{1D}\text{-ARs})$ couple to $G_{q/11}$ and participate directly in sympathetic regulation of systemic blood pressure by vasoconstriction. $\alpha_{1D}\text{-AR}$ can form hetero-oligomers with α_{1B} receptors. $\alpha_{1D}\text{-AR}$ transcripts are abundant in prostate and aorta. α_{1A} adrenergic receptors $(\alpha_{1A}\text{-ARs})$ mediate actions in the sympathetic nervous system through the binding of the catecholamines, epinephrine and norepinephrine. $\alpha_{1A}\text{-adrenergic}$ receptors couple to $G_{q/11}$ and regulate blood pressure due to changes in vascular tone and cardiac output. Alternative splicing of this gene generates four isoforms with distinct C-termini, and the different expression profile of these subtypes produces distinct patterns of activation. $\alpha_{1A}\text{-AR}$ transcripts are abundant in heart, brain, liver, and prostate. $\alpha_{1A}\text{-AR}$ transcript sizes of 6.0, 4.0, 3.0, and 2.0 kb have been detected in liver. $\alpha_{1A}\text{-AR}$ transcript sizes of 6.0, 4.0 and 3.0 kb transcripts have been detected in heart, and 6.0 kb and 4.0 kb transcripts have been detected in prostate.

CHROMOSOMAL LOCATION

Genetic locus: ADRA1D (human) mapping to 20p13; Adra1d (mouse) mapping to 2 F1.

SOURCE

 α_{1D} -AR (H-142) is a rabbit polyclonal antibody raised against amino acids 431-572 mapping at the C-terminus of α_{1D} -AR of human origin.

PRODUCT

Each vial contains 200 μg lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

APPLICATIONS

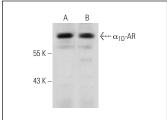
 $\alpha_{1D}\text{-AR}$ (H-142) is recommended for detection of $\alpha_{1D}\text{-AR}$ of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1-2 μg per 100-500 μg of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500), immunohistochemistry (including paraffin-embedded sections) (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

Suitable for use as control antibody for α_{1D} -AR siRNA (h): sc-29620, α_{1D} -AR siRNA (m): sc-29621, α_{1D} -AR shRNA Plasmid (h): sc-29620-SH, α_{1D} -AR shRNA Plasmid (m): sc-29621-SH, α_{1D} -AR shRNA (h) Lentiviral Particles: sc-29620-V and α_{1D} -AR shRNA (m) Lentiviral Particles: sc-29621-V.

Molecular Weight (predicted) of α_{1D} -AR: 60 kDa.

Molecular Weight (observed) of α_{1D} -AR: 47 kDa.

Positive Controls: A549 cell lysate: sc-2413, NCI-H460 whole cell lysate: sc-364235 or Hep G2 cell lysate: sc-2227.


STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.


RESEARCH USE

For research use only, not for use in diagnostic procedures.

DATA

 $lpha_{1D}$ -AR (H-142): sc-10721. Immunoperoxidase staining of formalin fixed, paraffin-embedded human heart muscle tissue showing cytoplasmic and membrane staining of myocytes.

SELECT PRODUCT CITATIONS

- Manni, L., et al. 2005. Ovarian expression of α₁- and β₂-adrenoceptors and p75 neurotrophin receptors in rats with steroid-induced polycystic ovaries. Auton. Neurosci. 118: 79-87.
- 2. Manni, L., et al. 2005. Effect of electro-acupuncture on ovarian expression of α_1 and β_2 -adrenoceptors, and p75 neurotrophin receptors in rats with steroid-induced polycystic ovaries. Reprod. Biol. Endocrinol. 3: 21.
- 3. Manni, L., et al. 2005. Effect of anti-NGF on ovarian expression of α_1 and β_2 -adrenoceptors, Trk A, p75NTR, and tyrosine hydroxylase in rats with steroid-induced polycystic ovaries. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290: R826-R835.
- 4. Manni, L., et al. 2005. Effect of exercise on ovarian morphology and expression of nerve growth factor and α_1 and β_2 -adrenergic receptors in rats with steroid-induced polycystic ovaries. J. Neuroendocrinol. 17: 846-858.
- 5. Ishihama, H., et al. 2006. Activation of α_{1D} adrenergic receptors in the rat urothelium facilitates the micturition reflex. J. Urol. 175: 358-364.
- Pradidarcheep, W., et al. 2009. Lack of specificity of commercially available antisera against muscarinergic and adrenergic receptors. Naunyn Schmiedebergs Arch. Pharmacol. 379: 397-402.
- Fan, L.L., et al. 2009. α_{1D}-adrenergic receptor insensitivity is associated with alterations in its expression and distribution in cultured vascular myocytes. Acta Pharmacol. Sin. 30: 1585-1593.
- 8. Chen, L., et al. 2009. Mechanisms of α_1 -adrenoceptor mediated QT prolongation in the diabetic rat heart. Life Sci. 84: 250-256.

Try α_{1D} -AR (F-10): sc-390884 or α_{1D} -AR (B-6): sc-365559, our highly recommended monoclonal aternatives to α_{1D} -AR (H-142).