APRT (C-12): sc-107413

The Power to Question

BACKGROUND

APRT (adenine phosphoribosyltransferase) is a 180 amino acid protein that localizes to the cytoplasm and belongs to the purine/pyrimidine phosphoribosyltransferase family. Existing as a homodimer, APRT functions to catalyze the formation of inorganic pyrophosphate and AMP from adenine and 5-phosphoribosyl-1-pyrophosphate (PRPP), a reaction that is essential for both purine metabolism and AMP biosynthesis. Defects in the gene encoding APRT are the cause of APRT deficiency, also known as 2,8-dihydroxyadenine urolithiasis, which is an autosomal recessive disease that results in renal failure. The gene encoding APRT maps to human chromosome 16, which encodes over 900 genes and comprises nearly 3% of the human genome. The GAN gene is located on chromosome 16 and, with mutation, may lead to giant axonal neuropathy, a nervous system disorder characterized by increasing malfunction with growth. The rare disorder Rubinstein-Taybi syndrome is also associated with chromosome 16, as is Crohn's disease, which is a gastrointestinal inflammatory condition.

REFERENCES

- 1. Holden, J.A., et al. 1979. Human adenine phosphoribosyltransferase. Affinity purification, subunit structure, amino acid composition, and peptide mapping. J. Biol. Chem. 254: 6951-6955.
- Hidaka, Y., et al. 1987. Nucleotide sequence of the human APRT gene. Nucleic Acids Res. 15: 9086.
- Broderick, T.P., et al. 1987. Comparative anatomy of the human APRT gene and enzyme: nucleotide sequence divergence and conservation of a nonrandom CpG dinucleotide arrangement. Proc. Natl. Acad. Sci. USA 84: 3349-3353.
- Kamatani, N., et al. 1989. Detection of an amino acid substitution in the mutant enzyme for a special type of adenine phosphoribosyltransferase (APRT) deficiency by sequence-specific protein cleavage. Am. J. Hum. Genet. 45: 325-331.
- Chen, J., et al. 1991. Identification of a single missense mutation in the adenine phosphoribosyltransferase (APRT) gene from five Icelandic patients and a British patient. Am. J. Hum. Genet. 49: 1306-1311.
- Menardi, C., et al. 1997. Human APRT deficiency: indication for multiple origins of the most common Caucasian mutation and detection of a novel type of mutation involving intrastrand-templated repair. Hum. Mutat. 10: 251-255.
- 7. Taniguchi, A., et al. 1998. A germline mutation abolishing the original stop codon of the human adenine phosphoribosyltransferase (APRT) gene leads to complete loss of the enzyme protein. Hum. Genet. 102: 197-202.
- 8. Silva, C.H., et al. 2008. Structural complexes of human adenine phosphoribosyltransferase reveal novel features of the APRT catalytic mechanism. J. Biomol. Struct. Dyn. 25: 589-597.
- 9. Online Mendelian Inheritance in Man, OMIM™. 2009. Johns Hopkins University, Baltimore, MD. MIM Number: 102600. World Wide Web URL: http://www.ncbi.nlm.nih.gov/omim/

CHROMOSOMAL LOCATION

Genetic locus: APRT (human) mapping to 16q24.3; Aprt (mouse) mapping to 8 E1.

SOURCE

APRT (C-12) is an affinity purified goat polyclonal antibody raised against a peptide mapping within an internal region of APRT of human origin.

PRODUCT

Each vial contains 200 μg lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-107413 P, (100 μ g peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

APPLICATIONS

APRT (C-12) is recommended for detection of APRT of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

Suitable for use as control antibody for APRT siRNA (h): sc-93376, APRT siRNA (m): sc-141179, APRT shRNA Plasmid (h): sc-93376-SH, APRT shRNA Plasmid (m): sc-141179-SH, APRT shRNA (h) Lentiviral Particles: sc-93376-V and APRT shRNA (m) Lentiviral Particles: sc-141179-V.

Molecular Weight of APRT: 20 kDa.

RECOMMENDED SECONDARY REAGENTS

To ensure optimal results, the following support (secondary) reagents are recommended: 1) Western Blotting: use donkey anti-goat IgG-HRP: sc-2020 (dilution range: 1:2000-1:100,000) or Cruz Marker™ compatible donkey anti-goat IgG-HRP: sc-2033 (dilution range: 1:2000-1:5000), Cruz Marker™ Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: sc-2333 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use donkey anti-goat IgG-FITC: sc-2024 (dilution range: 1:100-1:400) or donkey anti-goat IgG-TR: sc-2783 (dilution range: 1:100-1:400) with UltraCruz™ Mounting Medium: sc-24941.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com