# SANTA CRUZ BIOTECHNOLOGY, INC.

# DARPP-32 (H-62): sc-11365



### BACKGROUND

Dopaminergic signaling pathways, which are essential for multiple brain functions, are abnormal in several neurological disorders, such as schizophrenia, Parkinson's disease and drug abuse. DARPP-32 (for dopamine and adenosine 3',5'-monophosphate-regulated phosphoprotein) is abundant in neurons that receive dopaminergic input. Activation of PKA and the consequent phosphorylation of DARPP-32 on threonine occurs in response to dopamine acting upon D1-like receptors. Dopamine interaction with D2-like receptors results in the inhibition of PKA activation, the activation of protein phosphatase 2B and the consequent dephosphorylation of DARPP-32. Neurotransmitters other than dopamine may also be able to stimulate the phosphorylation or dephosphorylation of DARPP-32. Phosphorylated DARPP-32 is a potent inhibitor of PP-1.

# CHROMOSOMAL LOCATION

Genetic locus: PPP1R1B (human) mapping to 17q12; Ppp1r1b (mouse) mapping to 11 D.

### SOURCE

DARPP-32 (H-62) is a rabbit polyclonal antibody raised against amino acids 134-195 mapping epitope corresponding to amino acids 134-195 of DARPP-32 of bovine origin.

#### PRODUCT

Each vial contains 200  $\mu g$  IgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

Available as agarose conjugate for immunoprecipitation, sc-11365 AC, 500  $\mu g/0.25$  ml agarose in 1 ml.

## APPLICATIONS

DARPP-32 (H-62) is recommended for detection of DARPP-32 of human, bovine and, to a lesser extent, mouse and rat origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and immunohistochemistry (including paraffin-embedded sections) (starting dilution 1:50, dilution range 1:50-1:500).

Suitable for use as control antibody for DARPP-32 siRNA (h): sc-35173, DARPP-32 siRNA (m): sc-35174, DARPP-32 siRNA (r): sc-156003, DARPP-32 shRNA Plasmid (h): sc-35173-SH, DARPP-32 shRNA Plasmid (m): sc-35174-SH, DARPP-32 shRNA Plasmid (r): sc-156003-SH, DARPP-32 shRNA (h) Lentiviral Particles: sc-35173-V, DARPP-32 shRNA (m) Lentiviral Particles: sc-35174-V and DARPP-32 shRNA (r) Lentiviral Particles: sc-156003-V.

Molecular Weight of DARPP-32: 32 kDa.

#### **STORAGE**

Store at 4° C, \*\*DO NOT FREEZE\*\*. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

## PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

#### **RESEARCH USE**

For research use only, not for use in diagnostic procedures.

#### DATA





DARPP-32 (H-62): sc-11365. Western blot analysis of rat recombinant DARPP-32.

DARPP-32 (H-62): sc-11365. Immunofluorescence staining of methanol-fixed SK-N-SH cells showing cytoplasmic localization (**A**). Immunoperoxidase staining of formalin fixed, paraffin-embedded human brain tumor showing cytoplasmic localization (**B**).

## SELECT PRODUCT CITATONS

- 1. El-Rifai, W., et al. 2002. Gastric cancers overexpress DARPP-32 and a novel isoform,  $\tau$ -DARPP. Cancer Res. 62: 4061-4064.
- Kondo, Y., et al. 2010. Expression and role of the BDNF receptor-TrkB in rat adrenal gland under acute immobilization stress. Acta Histochem. Cytochem. 43: 139-147.
- Mukherjee, K., et al. 2010. Dopamine and cAMP regulated phosphoprotein MW 32 kDa is overexpressed in early stages of gastric tumorigenesis. Surgery 148: 354-363.
- Alvaro-Bartolome, M., et al. 2011. Molecular adaptations of apoptotic pathways and signaling partners in the cerebral cortex of human cocaine addicts and cocaine-treated rats. Neuroscience 196: 1-15.
- Dong, G., et al. 2011. Modeling pathogenesis of Huntington's disease with inducible neuroprogenitor cells. Cell. Mol. Neurobiol. 31: 737-747.
- Zhu, S., et al. 2011. DARPP-32 increases interactions between epidermal growth factor receptor and ERBB3 to promote tumor resistance to gefitinib. Gastroenterology 141: 1738-1748.e1-2.
- Chien, C.C., et al. 2012. Naloxonazine, a specific μ-opioid receptor antagonist, attenuates the increment of locomotor activity induced by acute methamphetamine in mice. Toxicol. Lett. 212: 61-65.
- 8. Hong, J., et al. 2012. Regulation of ERBB2 receptor by  $\tau$ -DARPP mediates trastuzumab resistance in human esophageal adenocarcinoma. Cancer Res. 72: 4504-4514.
- 9. Pauly, M.C., et al. 2013. Organization of the human fetal subpallium. Fronti. Neuroanat. 7: 54.



Try DARPP-32 (H-3): sc-271111 or DARPP-32 (G-5): sc-398360, our highly recommended monoclonal aternatives to DARPP-32 (H-62). Also, for AC, HRP, FITC, PE, Alexa Fluor<sup>®</sup> 488 and Alexa Fluor<sup>®</sup> 647 conjugates, see DARPP-32 (H-3): sc-271111.