# RAMP2 (H-139): sc-11380



The Power to Question

# **BACKGROUND**

Receptor activity-modifying proteins (RAMPs) are transmembrane accessory proteins that influence the pharmacological profiles of the calcitonin receptor-like receptors (CRLR). RAMPs associate with CRLR in the endoplasmic reticulum and facilitate the glycosylation and transport of CRLR to the cell surface, where the mature protein then operates as a receptor for two structurally related vasodilatory peptides, calcitonin-gene-related peptide (CGRP) or adrenomedullin (ADM). RAMP1 associating with CRLR confers a CGRP receptor, while RAMP2 and RAMP3 preferentially induce a responsiveness to ADM. RAMP proteins, including RAMP1, RAMP2 and RAMP3, are structurally similar as they are type I receptors, which have a single extracellular N-terminus and a cytoplasmic C-terminus, and they share approximately 55% sequence similarity. RAMP1 expression is highest in the uterus, brain and gastrointestinal tract, whereas RAMP2 and RAMP3 are highest in lung, breast and fetal tissues.

# CHROMOSOMAL LOCATION

Genetic locus: RAMP2 (human) mapping to 17q21.31; Ramp2 (mouse) mapping to 11 D.

#### SOURCE

RAMP2 (H-139) is a rabbit polyclonal antibody raised against amino acids 28-166 of RAMP2 of human origin.

#### **PRODUCT**

Each vial contains 200  $\mu g$  lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

# **APPLICATIONS**

RAMP2 (H-139) is recommended for detection of RAMP2 of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1-2  $\mu$ g per 100-500  $\mu$ g of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

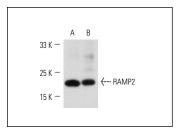
Suitable for use as control antibody for RAMP2 siRNA (h): sc-36378, RAMP2 siRNA (m): sc-36379, RAMP2 shRNA Plasmid (h): sc-36378-SH, RAMP2 shRNA Plasmid (m): sc-36379-SH, RAMP2 shRNA (h) Lentiviral Particles: sc-36378-V and RAMP2 shRNA (m) Lentiviral Particles: sc-36379-V.

Molecular Weight of RAMP2: 20 kDa.

Positive Controls: mouse brain extract: sc-2253, A549 cell lysate: sc-2413 or rat brain extract: sc-2392.

#### **STORAGE**

Store at 4° C, \*\*DO NOT FREEZE\*\*. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.


# **PROTOCOLS**

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

#### **RESEARCH USE**

For research use only, not for use in diagnostic procedures.

### **DATA**



RAMP2 (H-139): sc-11380. Western blot analysis of RAMP2 expression in rat (**A**) and mouse (**B**) brain tissue extracts

# **SELECT PRODUCT CITATIONS**

- Wang, X., et al. 2003. Upregulation of ligand, receptor system, and amidating activity of adrenomedullin in left ventricular hypertrophy of severely hypertensive rats: effects of angiotensin-converting enzyme inhibitors and diuretic. J. Hypertens. 21: 1171-1181.
- Granholm, S., et al. 2008. Expression of the calcitonin receptor, calcitonin receptor-like receptor, and receptor activity modifying proteins during osteoclast differentiation. J. Cell. Biochem. 104: 920-933.
- Bell, D., et al. 2008. Influence of atenolol and nifedipine on nitric-oxide deficient cardiomyocyte hypertrophy and expression of the cardio-endocrine peptide intermedin and its receptor components. Cell. Physiol. Biochem. 21: 203-214.
- Bell, D., et al. 2008. Expression of the counter-regulatory peptide intermedin is augmented in the presence of oxidative stress in hypertrophied cardiomyocytes. Cell. Physiol. Biochem. 21: 409-420.
- Zeng, Q., et al. 2009. Upregulated expression of intermedin and its receptor in the myocardium and aorta in spontaneously hypertensive rats. Peotides 30: 391-399.
- Pan, C.S., et al. 2010. Adrenomedullin ameliorates the development of atherosclerosis in apoE<sup>-/-</sup> mice. Peptides 31: 1150-1158.
- Hipolito, U.V., et al. 2011. Chronic ethanol consumption reduces adrenomedullin-induced relaxation in the isolated rat aorta. Alcohol 45: 805-814.
- Rocha, J.T., et al. 2012. Ethanol consumption alters the expression and reactivity of adrenomedullin in the rat mesenteric arterial bed. Alcohol Alcohol. 47: 9-17.



Try **RAMP2 (B-5):** sc-365240, our highly recommended monoclonal aternative to RAMP2 (H-139).