KCNQ4 (S-18): sc-12442

The Power to Question

BACKGROUND

Epilepsy affects about 0.5% of the world's population and has a large genetic component. Epilepsy results from an electrical hyperexcitability in the central nervous system. Potassium channels are important regulators of electrical signaling, determining the firing properties and responsiveness of a variety of neurons. Benign familial neonatal convulsions (BFNC), an autosomal dominant epilepsy of infancy, has been shown to be caused by mutations in the KCNQ2 or the KCNQ3 potassium channel genes. KCNQ2 and KCNQ3 are voltage-gated potassium channel proteins with six putative transmembrane domains. Both proteins display a broad distribution within the brain, with expression patterns that largely overlap. Mutations of KCNQ4 affect the functions of sensory outer hair cells and lead to deafness.

REFERENCES

- 1. Singh, N.A., et al. 1998. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat. Genet. 18: 25-29.
- 2. Charlier, C., et al. 1998. A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat. Genet. 18: 53-55.
- Schroeder, B.C., et al. 1998. Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy. Nature 396: 687-690.
- 4. Biervert, C., et al. 1998. A potassium channel mutation in neonatal human epilepsy. Science 279: 403-406.
- Wang, H.S., et al. 1998. KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science 282: 1890-1893.

CHROMOSOMAL LOCATION

Genetic locus: KCNQ4 (human) mapping to 1p34.2.

SOURCE

KCNQ4 (S-18) is an affinity purified goat polyclonal antibody raised against a peptide mapping near the N-terminus of KCNQ4 of human origin.

PRODUCT

Each vial contains 200 μg lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-12442 P, (100 μ g peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

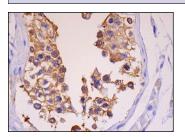
PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

APPLICATIONS

KCNQ4 (S-18) is recommended for detection of KCNQ4 of human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500), immunohistochemistry (including paraffin-embedded sections) (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

KCNQ4 (S-18) is also recommended for detection of KCNQ4 in additional species, including porcine.


Suitable for use as control antibody for KCNQ4 siRNA (h): sc-42503, KCNQ4 shRNA Plasmid (h): sc-42503-SH and KCNQ4 shRNA (h) Lentiviral Particles: sc-42503-V.

Molecular Weight of KCNQ4: 77 kDa.

RECOMMENDED SECONDARY REAGENTS

To ensure optimal results, the following support (secondary) reagents are recommended: 1) Western Blotting: use donkey anti-goat IgG-HRP: sc-2020 (dilution range: 1:2000-1:100,000) or Cruz Marker™ compatible donkey anti-goat IgG-HRP: sc-2033 (dilution range: 1:2000-1:5000), Cruz Marker™ Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: sc-2333 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use donkey anti-goat IgG-FITC: sc-2024 (dilution range: 1:100-1:400) or donkey anti-goat IgG-TR: sc-2783 (dilution range: 1:100-1:400) with UltraCruz™ Mounting Medium: sc-24941. 3) Immunohistochemistry: use ImmunoCruz™: sc-2053 or ABC: sc-2023 goat IgG Staining Systems.

DATA

KCNQ4 (S-18): sc-12442. Immunoperoxidase staining of formalin fixed, paraffin-embedded human testis tissue showing membrane and cytoplasmic staining of cells in seminiferous ducts.

SELECT PRODUCT CITATIONS

 Joshi, S., et al. 2009. KCNQ modulators reveal a key role for KCNQ potassium channels in regulating the tone of rat pulmonary artery smooth muscle. J. Pharmacol. Exp. Ther. 329: 368-376.

Try **KCNQ4 (F-10):** sc-271320, our highly recommended monoclonal alternative to KCNQ4 (S-18).