SANTA CRUZ BIOTECHNOLOGY, INC.

CHS (aN-20): sc-12620

BACKGROUND

Arabidopsis development is mediated by several environmental stimuli. Light plays an important role in many developmental processes, including photosynthesis, chloroplast biogenesis, leaf initiation, and floral induction. Light-dependent development, called photomorphogenesis, relies heavily on the action of five phytochromes, PhyA, B, C, D, and E, which are involved in photoperiod sensing and the shade avoidance syndrome. These phytochromes are partially regulated by transcriptional repressors of photomorphogenic development, such as COP1 and COP9. Other light sensitive proteins include CAB (chlorophyll α/β -binding), which is essential for chloroplast development, and chalcone synthase (CHS), which mediates the flavinoid biosynthetic pathway.

REFERENCES

- 1. Chory, J. 1993. Out of darkness: mutants reveal pathways controlling light-regulated development in plants. Trends Genet. 9: 167-172.
- Qin, M., et al. 1997. Overexpressed phytochrome C has similar photosensory specificity to phytochrome B but a distinctive capacity to enhance primary leaf expansion. Plant J. 12: 1163-1172.
- 3. Devlin, P.F., et al. 1998. Phytochrome E influences internode elongation and flowering time in *Arabidopsis*. Plant Cell 10: 1479-1487.
- Lopez-Juez, E., et al. 1998. New Arabidopsis cue mutants suggest a close connection between plastid- and phytochrome regulation of nuclear gene expression. Plant Physiol. 118: 803-815.
- Kubasek, W.L., et al. 1998. A light-independent developmental mechanism potentiates flavinoid gene expression in *Arabidopsis* seedlings. Plant Mol. Biol. 37: 217-223.
- Stoop-Myer, C., et al. 1999. The N-terminal fragment of *Arabidopsis* photomorphogenic repressor COP1 maintains partial function and acts in a concentration-dependent manner. Plant J. 20: 713-717.
- 7. Karniol, B., et al. 1999. *Arabidopsis* FUSCA5 encodes a novel phosphoprotein that is a component of the COP9 complex. Plant Cell 11: 839-848.
- Casal, J.J., et al. 2000. Two photobiological pathways of phytochrome A activity, only one of which shows dominant negative suppression by phytochrome B. Photochem. Photobiol. 71: 481-486.

SOURCE

CHS (aN-20) is an affinity purified goat polyclonal antibody raised against a peptide mapping near the N-terminus of CHS of *Arabidopsis thaliana* origin.

PRODUCT

Each vial contains 200 μg lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-12620 P, (100 μ g peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

RESEARCH USE

For research use only, not for use in diagnostic procedures.

APPLICATIONS

CHS (aN-20) is recommended for detection of CHS of *Arabidopsis thaliana* Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

RECOMMENDED SECONDARY REAGENTS

To ensure optimal results, the following support (secondary) reagents are recommended: 1) Western Blotting: use donkey anti-goat IgG-HRP: sc-2020 (dilution range: 1:2000-1:100,000) or Cruz Marker™ compatible donkey anti-goat IgG-HRP: sc-2033 (dilution range: 1:2000-1:5000), Cruz Marker™ Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: sc-2333 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluo-rescence: use donkey anti-goat IgG-TR: sc-2783 (dilution range: 1:100-1:400) with UltraCruz™ Mounting Medium: sc-24941.

SELECT PRODUT CITATIONS

- Oravecz, A., et al. 2006. Constitutively Photomorphogenic1 is required for the UV-B response in *Arabidopsis*. Plant Cell 18: 1975-1990.
- Favory, J.J., et al. 2009. Interaction of COP1 and UVR8 regulates UV-Binduced photomorphogenesis and stress acclimation in *Arabidopsis*. EMBO J. 28: 591-601.
- Gruber, H., et al. 2010. Negative feedback regulation of UV-B-induced photomorphogenesis and stress acclimation in *Arabidopsis*. Proc. Natl. Acad. Sci. USA 107: 20132-20137.
- 4. González Besteiro, M.A., et al. 2011. *Arabidopsis* MAP kinase phosphatase 1 and its target MAP kinases 3 and 6 antagonistically determine UV-B stress tolerance, independent of the UVR8 photoreceptor pathway. Plant J. 68: 727-737.
- Schenke, D., et al. 2011. Crosstalk between abiotic ultraviolet-B stress and biotic (flg22) stress signalling in *Arabidopsis* prevents flavonol accumulation in favor of pathogen defence compound production. Plant Cell Environ. 34: 1849-1864.

STORAGE

Store at 4° C, **D0 NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.