SANTA CRUZ BIOTECHNOLOGY, INC.

elF3M (V-21): sc-133541

The Power to Question

BACKGROUND

The initiation of protein synthesis in eukaryotic cells is regulated by interactions between protein initiation factors and RNA molecules. Eukaryotic initiation factors (eIFs) are utilized in a sequence of reactions that lead to 80S ribosomal assembly and, ultimately, translation. The eukaryotic initiation factor-3 (eIF3) scaffolding structure is the largest of the eIF complexes and includes eIF3 α , eIF3 β , eIF3 γ , eIF3 δ , eIF3 ϵ , eIF3 γ , eIF3 β , eIF3 γ , eIF3 δ , eIF3 δ , eIF3 γ , eIF3 δ , eIF

REFERENCES

- Valásek, L., et al. 2004. Interactions of eukaryotic translation initiation factor 3 (eIF3) subunit NIP1/c with eIF1 and eIF5 promote preinitiation complex assembly and regulate start codon selection. Mol. Cell. Biol. 24: 9437-9455.
- 2. Peterson, T.R. and Sabatini, D.M. 2005. eIF3: a connecTOR of S6K1 to the translation preinitiation complex. Mol. Cell 20: 655-657.
- Dong, Z. and Zhang, J.T. 2006. Initiation factor eIF3 and regulation of mRNA translation, cell growth, and cancer. Crit. Rev. Oncol. Hematol. 59: 169-180.
- 4. LeFebvre, A.K., et al. 2006. Translation initiation factor eIF4G-1 binds to eIF3 through the eIF3ɛ subunit. J. Biol. Chem. 281: 22917-22932.
- 5. Hinnebusch, A.G. 2006. eIF3: a versatile scaffold for translation initiation complexes. Trends Biochem. Sci. 31: 553-562.
- Masutani, M., et al. 2007. Reconstitution reveals the functional core of mammalian eIF3. EMBO J. 26: 3373-3383.
- Zhang, L., et al. 2007. Individual overexpression of five subunits of human translation initiation factor eIF3 promotes malignant transformation of immortal fibroblast cells. J. Biol. Chem. 282: 5790-5800.
- Sato, H., et al. 2007. Measles virus N protein inhibits host translation by binding to elF3-p40. J. Virol. 81: 11569-11576.
- 9. Online Mendelian Inheritance in Man, OMIM™. 2008. Johns Hopkins University, Baltimore, MD. MIM Number: 609641. World Wide Web URL: http://www.ncbi.nlm.nih.gov/omim/

CHROMOSOMAL LOCATION

Genetic locus: EIF3M (human) mapping to 11p13; Eif3m (mouse) mapping to 2 E2.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

SOURCE

elF3M (V-21) is a Protein A purified rabbit polyclonal antibody raised against synthetic elF3M peptide of human origin.

PRODUCT

Each vial contains 100 μ g lgG in 1.0 ml PBS with < 0.1% sodium azide, 0.1% gelatin and < 0.02% sucrose.

APPLICATIONS

elF3M (V-21) is recommended for detection of elF3M of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1-2 μ g per 100-500 μ g of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500), immunohistochemistry (including paraffin-embedded sections) (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

Suitable for use as control antibody for eIF3M siRNA (h): sc-96834, eIF3M siRNA (m): sc-144616, eIF3M shRNA Plasmid (h): sc-96834-SH, eIF3M shRNA Plasmid (m): sc-144616-SH, eIF3M shRNA (h) Lentiviral Particles: sc-96834-V and eIF3M shRNA (m) Lentiviral Particles: sc-144616-V.

Molecular Weight of eIF3M: 43 kDa.

Positive Controls: Hep G2 cell lysate: sc-2227, mouse brain extract: sc-2253 or human kidney tissue.

elF3M (V-21): sc-133541. Western blot analysis of elF3M expression in Hep G2 whole cell lysate. elF3M (V-21): sc-133541. Immunoperoxidase staining of formalin-fixed, paraffin-embedded human kidney tissue showing nuclear and cytoplasmic localization.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.