SANTA CRUZ BIOTECHNOLOGY, INC.

AKR1A1 (H-115): sc-135112

BACKGROUND

AKR1A1 (aldo-keto reductase family 1 member A1), also known as ALR (aldehyde reductase), DD3 (dihydrodiol dehydrogenase 3) or ALDR1 (alcohol dehydrogenase), is a widely and abundantly expressed member of the aldo-keto reductase (AKR) family of proteins. Members of the AKR family are soluble NADPH-dependent oxidoreductases. They play important roles in the metabolism of drugs, carcinogens and reactive aldehydes. AKR1A1 exists as a monomer and catalyzes the reduction of xenobiotic and biogenic aldehydes and ketones to their corresponding alcohols. In particular, AKR1A1 efficiently catalyzes medium-chain and aromatic aldehydes. AKR1A1 participates in the biosynthetic pathways of cholesterol and triglyceride and plays a role in the activation of polycyclic aromatic hydrocarbons (PAHs).

REFERENCES

- Jez, J.M., et al. 1997. A new nomenclature for the aldo-keto reductase superfamily. Biochem. Pharmacol. 54: 639-647.
- O'connor, T., et al. 1999. Major differences exist in the function and tissuespecific expression of human aflatoxin B1 aldehyde reductase and the principal human aldo-keto reductase AKR1 family members. Biochem. J. 343: 487-504.
- Barski, O.A., et al. 1999. Characterization of the human aldehyde reductase gene and promoter. Genomics 60: 188-198.
- Palackal, N.T., et al. 2001. The ubiquitous aldehyde reductase (AKR1A1) oxidizes proximate carcinogen *trans*-dihydrodiols to o-quinones: potential role in polycyclic aromatic hydrocarbon activation. Biochemistry 40: 10901-10910.
- Palackal, N.T., et al. 2001. Metabolic activation of polycyclic aromatic hydrocarbon *trans*-dihydrodiols by ubiquitously expressed aldehyde reductase (AKR1A1). Chem. Biol. Interact. 130-132: 815-824.
- Plebuch, M., et al. 2007. Increased resistance of tumor cells to daunorubicin after transfection of cDNAs coding for anthracycline inactivating enzymes. Cancer Lett. 255: 49-56.

CHROMOSOMAL LOCATION

Genetic locus: AKR1A1 (human) mapping to 1p34.1; Akr1a4 (mouse) mapping to 4 D1.

SOURCE

AKR1A1 (H-115) is a rabbit polyclonal antibody raised against amino acids 211-325 mapping at the C-terminus of AKR1A1 of human origin.

PRODUCT

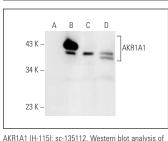
Each vial contains 200 μg lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

APPLICATIONS

AKR1A1 (H-115) is recommended for detection of AKR1A1 of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1-2 μ g per 100-500 μ g of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).


AKR1A1 (H-115) is also recommended for detection of AKR1A1 in additional species, including equine, canine, bovine and porcine.

Suitable for use as control antibody for AKR1A1 siRNA (h): sc-78566, AKR1A1 siRNA (m): sc-140983, AKR1A1 shRNA Plasmid (h): sc-78566-SH, AKR1A1 shRNA Plasmid (m): sc-140983-SH, AKR1A1 shRNA (h) Lentiviral Particles: sc-78566-V and AKR1A1 shRNA (m) Lentiviral Particles: sc-140983-V.

Molecular Weight of AKR1A1: 37 kDa.

Positive Controls: AKR1A1 (h): 293T Lysate: sc-174231, human liver extract: sc-363766 or human kidney extract: sc-363764.

DATA

AKH1A1 (H-115): sc-135112. Western biot analysis of AKR1A1 expression in non-transfected: sc-117752 (**A**) and human AKR1A1 transfected: sc-174231 (**B**) 293T whole cell lysates and human kidney (**C**) and human liver (**D**) tissue extracts.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

MONOS Satisfation Guaranteed Revealed R