SIRT3 (14.27): sc-135795

The Power to Question

BACKGROUND

The silent information regulator (SIR2) family of genes are highly conserved from prokaryotes to eukaryotes and are involved in diverse processes including transcriptional regulation, cell cycle progression, DNA-damage repair and aging. In *S. cerevisiae*, Sir2p deacetylates histones in a NAD-dependent manner, which regulates silencing at the telomeric, rDNA and silent mating-type loci. Sir2p is the founding member of a large family, designated sirtuins, which contain a conserved catalytic domain. The human homologs, which include SIRT1-7, are divided into four main branches: SIRT1-3 are class I, SIRT4 is class II, SIRT5 is class III and SIRT6-7 are class IV. SIRT3 is a NAD-dependent deacetylase that contains one deacetylase sirtuin-type domain. The SIRT3 protein is widely expressed and localizes to the mitochondira where it is processed by mitochondrial processing peptidase (MPP) to yield a final product. This processing is most likely necessary for its enzymatic activity.

REFERENCES

- Frye, R.A. 1999. Characterization of five human cDNAs with homology to the yeast SIR2 gene: SIR2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem. Biophys. Res. Commun. 260: 273-279.
- Frye, R.A. 2000. Phylogenetic classification of prokaryotic and eukaryotic SIR2-like proteins. Biochem. Biophys. Res. Commun. 273: 793-798.
- Grozinger, C.M., et al. 2001. Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J. Biol. Chem. 276: 38837-38843.
- Michishita, E., et al. 2005. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell 16: 4623-4635.
- Bellizzi, D., et al. 2005. A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics 85: 258-263.
- Shi, T., et al. 2005. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J. Biol. Chem. 280: 13560-13567.

CHROMOSOMAL LOCATION

Genetic locus: SIRT3 (human) mapping to 11p15.5.

SOURCE

SIRT3 (14.27) is a mouse monoclonal antibody raised against a synthetic peptide corresponding to amino acids 261-276 of SIRT3 of human origin.

PRODUCT

Each vial contains 200 $\mu g \ lgG_1$ kappa light chain in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

STORAGE

Store at 4° C, **D0 NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

APPLICATIONS

SIRT3 (14.27) is recommended for detection of SIRT3 of human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

Suitable for use as control antibody for SIRT3 siRNA (h): sc-61555, SIRT3 shRNA Plasmid (h): sc-61555-SH and SIRT3 shRNA (h) Lentiviral Particles: sc-61555-V.

Molecular Weight of SIRT3: 28 kDa.

RECOMMENDED SUPPORT REAGENTS

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz Marker Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: sc-2333 and Western Blotting Luminol Reagent: sc-2048.

RESEARCH USE

For research use only, not for use in diagnostic procedures. Not for resale.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

See **SIRT3 (F-10): sc-365175** for SIRT3 antibody conjugates, including AC, HRP, FITC, PE, Alexa Fluor[®] 488 and Alexa Fluor[®] 647.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 Furope +00800 4573 8000 49 6221 4503 0 www.scbt.com