SANTA CRUZ BIOTECHNOLOGY, INC.

Rad9 (56): sc-136053

BACKGROUND

DNA damage or incomplete replication of DNA results in the inhibition of cell cycle progression at the G₁ to S or G₂ to M phase checkpoints by conserved regulatory mechanisms. Chk1, Rad9 and Hus1 are involved in the signal transduction cascade that regulates cell cycle arrest at the G₂ checkpoint. Chk1 functions as an essential component in the G₂ phase DNA damage checkpoint, as it phosphorylates Cdc25C in response to DNA damage and thereby inhibits mitosis. Two related mammalian proteins, Hus1 and Rad9, share conserved sequence identity and function to the yeast homologs of the same names. *In vivo*, Rad9 is highly phosphorylated and directly associates with two other checkpoint control proteins, Rad1 and Hus1. Additionally, Rad9 associates with anti-apoptotic Bcl-2 family proteins Bcl-2 and Bcl-x_L, but not with the pro-apoptotic Bax and Bad proteins. Overexpression of Rad9 induces apoptosis and indicates that Rad9 may have an additional role in regulating apoptosis after DNA damage.

REFERENCES

- 1. Carr, A.M., et al. 1995. The Chk1 pathway is required to prevent mitosis following cell-cycle arrest at "start". Curr. Biol. 5: 1179-1190.
- Lieberman, H.B., et al. 1996. A human homolog of the *Schizosaccharomyces* pombe Rad9⁺ checkpoint control gene. Proc. Natl. Acad. Sci. USA 93: 13890-13895.
- Sanchez, Y., et al. 1997. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277: 1497-1501.
- O'Connell, M.J., et al. 1997. Chk1 is a Wee1 kinase in the G₂ DNA damage checkpoint inhibiting Cdc2 by Y15 phosphorylation. EMBO J. 16: 545-554.
- 5. Peng, C.Y., et al. 1997. Mitotic and G_2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on Serine 216. Science 277: 1501-1505.
- Kostrub, C.F., et al. 1998. Hus1p, a conserved fission yeast checkpoint protein, interacts with Rad1p and is phosphorylated in response to DNA damage. EMBO J. 17: 2055-2066.

CHROMOSOMAL LOCATION

Genetic locus: RAD9A (human) mapping to 11q13.2; Rad9a (mouse) mapping to 19 A.

SOURCE

Rad9 (56) is a mouse monoclonal antibody raised against amino acids 264-370 of Rad9 of human origin.

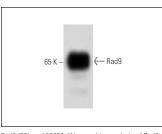
PRODUCT

Each vial contains 50 μ g lgG₁ in 500 μ l of PBS with < 0.1% sodium azide, 0.1% gelatin, 20% glycerol and 0.04% stabilizer protein.

STORAGE

Store at 4° C, **D0 NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

APPLICATIONS


Rad9 (56) is recommended for detection of Rad9 of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1-2 μ g per 100-500 μ g of total protein (1 ml of cell lysate)] and immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500).

Suitable for use as control antibody for Rad9 siRNA (h): sc-36364, Rad9 siRNA (m): sc-36365, Rad9 shRNA Plasmid (h): sc-36364-SH, Rad9 shRNA Plasmid (m): sc-36365-SH, Rad9 shRNA (h) Lentiviral Particles: sc-36364-V and Rad9 shRNA (m) Lentiviral Particles: sc-36365-V.

Molecular Weight of Rad9: 65 kDa.

Positive Controls: HeLa whole cell lysate: sc-2200, NIH/3T3 whole cell lysate: sc-2210 or KNRK whole cell lysate: sc-2214.

DATA

Rad9 (56): sc-136053. Western blot analysis of Rad9 expression in human endothelial whole cell lysate.

RESEARCH USE

For research use only, not for use in diagnostic procedures. Not for resale.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.