CPE (35): sc-136252

The Power to Question

BACKGROUND

Carboxypeptidase N (arginine carboxypeptidase or CPN) cleaves basic amino acid residues from the C-terminus of peptides and proteins. The enzyme plays a central role in regulating the biologic activity of peptides such as kinins and anaphylatoxins, and therefore is also known as kininase-1 and anaphylatoxin inactivator. CPN is a tetrameric complex consisting of two identical regulatory subunits (CPN reg) and two identical catalytic subunits (CPN cat). CPN reg is a member of the leucine-rich repeat family of proteins and CPN cat is a member of the regulatory B-type carboxypeptidase group. Carboxypeptidase E (CPE) is important for removing any remaining C-terminal Arg or Lys after initial endoprotease cleavage during prohormone processing. CPE is also crucial in proinsulin processing, and required for normal-sized photoreceptor synaptic terminal and normal signal transmission to the inner retina.

REFERENCES

- Zhu, X., Wu, K., Rife, L., Cawley, N.X., Brown, B., Adams, T., Teofilo, K., Lillo, C., Williams, D.S., Loh, Y.P. and Craft, C.M. 2005. Carboxypeptidase E is required for normal synaptic transmission from photoreceptors to the inner retina. J. Neurochem. 95: 1351-1362.
- 2. Hosaka, M., Watanabe, T., Sakai, Y., Kato, T. and Takeuchi, T. 2005. Interaction between secretogranin III and carboxypeptidase E facilitates prohormone sorting within secretory granules. J. Cell Sci. 118: 4785-4795.
- 3. Johnston, R.A., Theman, T.A. and Shore, S.A. 2005. Augmented responses to ozone in obese carboxypeptidase E deficient mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290: R126-R133.
- 4. Marzban, L., Soukhatcheva, G. and Verchere, C.B. 2005. Role of carboxy-peptidase E in processing of pro-islet amyloid polypeptide in β cells. Endocrinology 146: 1808-1817.
- Lou, H., Kim, S.K., Zaitsev, E., Snell, C.R., Lu, B. and Loh, Y.P. 2005.
 Sorting and activity-dependent secretion of BDNF require interaction of a specific motif with the sorting receptor carboxypeptidase E. Neuron 45: 245-255.

CHROMOSOMAL LOCATION

Genetic locus: CPE (human) mapping to 4q32.3; Cpe (mouse) mapping to 8 B3.1.

SOURCE

CPE (35) is a mouse monoclonal antibody raised against amino acids 49-200 of CPE of human origin.

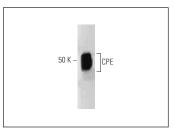
PRODUCT

Each vial contains 50 $\mu g \; lg G_1$ in 0.5 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

APPLICATIONS


CPE (35) is recommended for detection of CPE of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1-2 μ g per 100-500 μ g of total protein (1 ml of cell lysate)] and immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500)

Suitable for use as control antibody for CPE siRNA (h): sc-45378, CPE siRNA (m): sc-45379, CPE shRNA Plasmid (h): sc-45378-SH, CPE shRNA Plasmid (m): sc-45379-SH, CPE shRNA (h) Lentiviral Particles: sc-45378-V and CPE shRNA (m) Lentiviral Particles: sc-45379-V.

Molecular Weight of CPE: 60 kDa.

Positive Controls: PC-12 cell lysate: sc-2250 or rat brain extract: sc-2392.

DATA

CPE (35): sc-136252. Western blot analysis of CPE expression in rat brain tissue extract.

SELECT PRODUCT CITATIONS

- 1. Majumder, M., et al. 2012. Co-expression of $\alpha 9\beta 1$ Integrin and VEGF-D confers lymphatic metastatic ability to a human breast cancer cell line MDA-MB-468LN. PLoS ONE 7: e35094.
- 2. Makani, V., et al. 2013. Annexin A1 complex mediates oxytocin vesicle transport. J. Neuroendocrinol. 25: 1241-1254.

RESEARCH USE

For research use only, not for use in diagnostic procedures. Not for resale.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 Fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com