elF3η (D-9): sc-137215

The Power to Question

BACKGROUND

The initiation of protein synthesis in eukaryotic cells is regulated by interactions between protein initiation factors and RNA molecules. Eukaryotic initiation factors (elFs) are utilized in a sequence of reactions that lead to 80S ribosomal assembly and, ultimately, translation. The eukaryotic initiation factor-3 (elF3) scaffolding structure is the largest of the elF complexes and includes elF3 α , elF3 β , elF3 γ , elF3 δ , elF3 ξ , elF3 ζ , elF3 η and elF3 θ , all of which function to control the assembly of the 40S ribosomal subunit. Association of elF3 proteins with the 40S ribosomal subunit stabilizes elF2-GTP-Met-tRNAiMet complex association and mRNA binding, and promotes dissociation of 80S ribosomes into 40S and 60S subunits, thereby promoting the assembly of the pre-initiation complex. Overexpression of elF3 proteins is common in several cancers, suggesting a role for elF3 proteins in tumorigenesis.

REFERENCES

- Valasek, L., et al. 2004. Interactions of eukaryotic translation initiation factor 3 (eIF3) subunit NIP1/c with eIF1 and eIF5 promote preinitiation complex assembly and regulate start codon selection. Mol. Cell. Biol. 24: 9437-9455.
- Peterson, T.R., et al. 2005. eIF3: a connecTOR of S6K1 to the translation preinitiation complex. Mol. Cell 20: 655-657.
- 3. Dong, Z., et al. 2006. Initiation factor eIF3 and regulation of mRNA translation, cell growth, and cancer. Crit. Rev. Oncol. Hematol. 59: 169-180.
- 4. LeFebvre, A.K., et al. 2006. Translation initiation factor elF4G-1 binds to elF3 through the elF3ε subunit. J. Biol. Chem. 281: 22917-22932.
- 5. Hinnebusch, A.G. 2006. elF3: a versatile scaffold for translation initiation complexes. Trends Biochem. Sci. 31: 553-562.
- Masutani, M., et al. 2007. Reconstitution reveals the functional core of mammalian elF3. EMBO J. 26: 3373-3383.
- Zhang, L., et al. 2007. Individual overexpression of five subunits of human translation initiation factor eIF3 promotes malignant transformation of immortal fibroblast cells. J. Biol. Chem. 282: 5790-5800.

CHROMOSOMAL LOCATION

Genetic locus: EIF3B (human) mapping to 7p22.3; Eif3b (mouse) mapping to 5 G2.

SOURCE

elF3 η (D-9) is a mouse monoclonal antibody raised against amino acids 131-300 mapping within an internal region of elF3 η of human origin.

PRODUCT

Each vial contains 200 $\mu g \ lgG_1$ kappa light chain in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

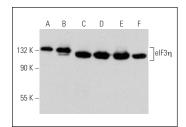
STORAGE

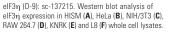
Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

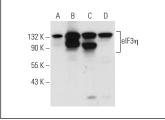
APPLICATIONS

elF3 η (D-9) is recommended for detection of elF3 η of mouse, rat and human origin by Western Blotting (starting dilution 1:100, dilution range 1:100-1:1000), immunoprecipitation [1-2 μ g per 100-500 μ g of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

Suitable for use as control antibody for eIF3 η siRNA (h): sc-35280, eIF3 η siRNA (m): sc-35281, eIF3 η shRNA Plasmid (h): sc-35280-SH, eIF3 η shRNA Plasmid (m): sc-35281-SH, eIF3 η shRNA (h) Lentiviral Particles: sc-35280-V and eIF3 η shRNA (m) Lentiviral Particles: sc-35281-V.


Molecular Weight of elF3n: 116 kDa.


Positive Controls: A-431 nuclear extract: sc-2122, eIF3 η (m): 293T Lysate: sc-119982 or Jurkat nuclear extract: sc-2132.


RECOMMENDED SUPPORT REAGENTS

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz® Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunoprecipitation: use Protein A/G PLUS-Agarose: sc-2003 (0.5 ml agarose/2.0 ml). 3) Immunofluorescence: use m-lgG κ BP-FITC: sc-516140 or m-lgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz® Mounting Medium: sc-24941 or UltraCruz® Hard-set Mounting Medium: sc-359850.

DATA

elF3 η (D-9): sc-137215. Western blot analysis of elF3 η expression in non-transfected: sc-117752 (A) and mouse elF3 η transfected: sc-119982 (B) 293T whole cell lysates and A-431 (C) and Jurkat (D) nuclear extracts.

SELECT PRODUCT CITATIONS

 Simpson-Holley, M., et al. 2011. Formation of antiviral cytoplasmic granules during orthopoxvirus infection. J. Virol. 85: 1581-1593.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.