SANTA CRUZ BIOTECHNOLOGY, INC.

α_{2A}-AR (C-19): sc-1478

BACKGROUND

 α_{2A} -adrenergic receptors (AR), which are members of the G protein-coupled receptor superfamily, regulate neurotransmitter release from sympathetic nerves in the heart, and from adrenergic neurons in the central nervous system. α_{2A} -AR regulates the phosphorylation of microtubule-associated protein 2, which in turn mediates dendrite growth of cortical neurons. α_{2A} -AR also contributes to feedback inhibition of pain hypersensitivity.

REFERENCES

- 1. Hein, L., et al. 1999. Two functionally distinct α_{2A} -adrenergic receptors regulate sympathetic neurotransmission. Nature 402: 181-184.
- 2. Mansikka, H., et al. 2004. α_{2A} -adrenoceptors contribute to feedback inhibition of capsaicin-induced hyperalgesia. Anesthesiology 101: 185-190.
- 3. Ihalainen, J.A., et al. 2004. *In vivo* regulation of dopamine and noradrenaline release by α_{2A} -adrenoceptors in the mouse nucleus accumbens. J. Neurochem. 91: 49-56.

CHROMOSOMAL LOCATION

Genetic locus: ADRA2A (human) mapping to 10q25.2, ADRA2B (human) mapping to 2q11.1; Adra2a (mouse) mapping to 19 D2, Adra2b (mouse) mapping to 2F1.

SOURCE

 $\alpha_{\text{2A}}\text{-}\text{AR}$ (C-19) is an affinity purified goat polyclonal antibody raised against a peptide mapping at the C-terminus of $\alpha_{\text{2A}}\text{-}\text{AR}$ of human origin.

PRODUCT

Each vial contains 200 μg lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-1478 P, (100 μ g peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

APPLICATIONS

 $\alpha_{\rm 2A}$ -AR (C-19) is recommended for detection of adrenergic receptor $\alpha_{\rm 2A}$, and to a lesser extent, $\alpha_{\rm 2B}$ of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immuno-precipitation [1-2 µg per 100-500 µg of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

 α_{2A} -AR (C-19) is also recommended for detection of adrenergic receptor α_{2A} , and to a lesser extent, α_{2B} in additional species, including bovine and porcine.

Molecular Weight of α_{2A} -AR: 70 kDa.

Positive Controls: KNRK whole cell lysate: sc-2214, rat adrenal gland extract: sc-364802 or mouse heart extract: sc-2254.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

DATA

 α_{2A} -AR (C-19): sc-1478. Western blot analysis of α_{2A} -AR expression in KNRK whole cell lysate (**A**) and rat adrenal gland tissue extract (**B**).

SELECT PRODUCT CITATIONS

1. Hou, Y., et al. 2002. Immunostaining of cholinergic pontomesencephalic neurons for α_{2A} versus α_{2A} -adrenergic receptors suggests different sleep-wake state activities and roles. Neuroscience 114: 517.

localization

- 2. Francis, H., et al. 2007. The α_2 -adrenergic receptor agonist UK 14,304 inhibits secretin-stimulated ductal secretion by downregulation of the cAMP system in bile duct-ligated rats. Am. J. Physiol. Cell Physiol. 293: C1252-C1262.
- 3. Ampatzis, K., et al. 2008. Neuronal and glial localization of α_{2A} -adrenoceptors in the adult zebrafish (*Danio rerio*) brain. J. Comp. Neurol. 508: 72-93.
- 4. Tan, M., et al. 2009. p38^{MAPK} and β -arrestin-2 mediate functional interactions between endogenous micro-opioid and α_{2A} -adrenergic receptors in neurons. J. Biol. Chem. 126: 6270-6281.
- 5. Bhuiyan, M.E., et al. 2009. Complex cardiovascular actions of α -adrenergic receptors expressed in the nucleus tractus solitarii of rats. Exp. Physiol. 94: 773-784.
- 6. Ampatzis, K. and Dermon, C.R. 2010. Regional distribution and cellular localization of β_2 -adrenoceptors in the adult zebrafish brain (Danio rerio). J. Comp. Neurol. 518: 1418-1441.
- 7. Roh, D.H., et al. 2010. Activation of spinal α_2 -adrenoceptors, but not muopioid receptors, reduces the intrathecal N-methyl-D-aspartate-induced increase in spinal NR1 subunit phosphorylation and nociceptive behaviors in the rat. Anesth. Analg. 110: 622-629.
- Estrany, M.E., et al. 2011. Isocaloric intake of a high-fat diet modifies adiposity and lipid handling in a sex dependent manner in rats. Lipids Health Dis. 10: 52.
- Gill, D.A., et al. 2012. Low-dose neonatal domoic acid causes persistent changes in behavioural and molecular indicators of stress response in rats. Behav. Brain Res. 230: 409-417.
- Crooke, A., et al. 2013. Melatonin and its analogue 5-MCA-NAT potentiate adrenergic receptor-mediated ocular hypotensive effects in rabbits: Significance for combination therapy in glaucoma. J. Pharmacol. Exp. Ther. 346: 138-145.