β-2-Microglobulin (FL-119): sc-15366

The Power to Overtin

BACKGROUND

Major histocompatibility complex (MHC) class 1 molecules bind to antigens for presentation on the surface of cells. The proteasome is responsible for producing these antigens from the components of foreign pathogens. MHC class 1 molecules consist of an a heavy chain that contains three subdomains (α 1, α 2, α 3), and a non-covalent associating light chain, known as β -2-Microglobulin. β -2-Microglobulin associates with the α 3 subdomain of the a heavy chain and forms an immunoglobulin domain-like structure that mediates proper folding and expression of MHC class 1 molecules. The α 1 and α 2 domains of the a heavy chain form the peptide antigenbinding cleft. Mice that lack β-2-Microglobulin protein show a normal distribution of T cells, yet have no mature CD4-8+ T cells and are defective in CD4-8+ T cell-mediated cytotoxicity. Interferon-y can stimulate production of β -2-Microglobulin transcripts. The human β -2-Microglobulin gene maps to chromosome 15q21.1 and encodes a 119 amino acid protein. Mutations in the β-2-Microglobulin gene can enhance the progression of malignant melanoma phenotypes.

CHROMOSOMAL LOCATION

Genetic locus: B2M (human) mapping to 15q21.1; B2m (mouse) mapping to 2 E5.

SOURCE

 $\beta\text{--}2\text{-Microglobulin}$ (FL-119) is a rabbit polyclonal antibody raised against amino acids 1-119 representing full length $\beta\text{--}2\text{-Microglobulin}$ of human origin.

PRODUCT

Each vial contains 200 μg lgG in 1.0 ml of PBS with <0.1% sodium azide and 0.1% gelatin.

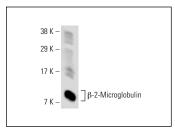
APPLICATIONS

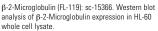
 $\beta\text{-}2\text{-}Microglobulin}$ (FL-119) is recommended for detection of $\beta\text{-}2\text{-}Microglobulin}$ of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1-2 μg per 100-500 μg of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500), immunohistochemistry (including paraffinembedded sections) (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

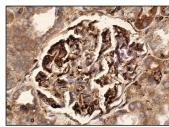
Suitable for use as control antibody for $\beta\text{-}2\text{-}Microglobulin siRNA}$ (h): sc-29592, $\beta\text{-}2\text{-}Microglobulin siRNA}$ (m): sc-29593, $\beta\text{-}2\text{-}Microglobulin}$ shRNA Plasmid (h): sc-29592-SH, $\beta\text{-}2\text{-}Microglobulin}$ shRNA Plasmid (m): sc-29593-SH, $\beta\text{-}2\text{-}Microglobulin}$ shRNA (h) Lentiviral Particles: sc-29592-V and $\beta\text{-}2\text{-}Microglobulin}$ shRNA (m) Lentiviral Particles: sc-29593-V.

Molecular Weight of β-2-Microglobulin: 12 kDa.

Positive Controls: NIH/3T3 whole cell lysate: sc-2210, HL-60 whole cell lysate: sc-2209 or mouse brain extract: sc-2253.


RESEARCH USE


For research use only, not for use in diagnostic procedures.


STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

DATA

β-2-Microglobulin (FL-119): sc-15366. Imunoperoxidase staining of formalin fixed, paraffin-embedded human kidney tissue showing membrane staining of glomerular cells and cytoplasmic staining of cells in tubules.

SELECT PRODUCT CITATIONS

- Setterblad, N., et al. 2004. B cell lipid rafts regulate both peptidedependent and peptide-independent APC-T cell interaction. J. Immunol. 173: 1876-1886.
- Wani, M.A., et al. 2006. Familial hypercatabolic hypoproteinemia caused by deficiency of the neonatal Fc receptor, FcRn, due to a mutant β-2-microglobulin gene. Proc. Natl. Acad. Sci. USA 103: 5084-5089.
- Nomura, T., et al. 2006. β-2-Microglobulin promotes the growth of human renal cell carcinoma through the activation of the protein kinase A, cyclic AMP-responsive element-binding protein, and vascular endothelial growth factor axis. Clin. Cancer Res. 12: 7294-7305.
- 4. Kageyama, K., et al. 2006. G protein-coupled receptor kinase 2 involvement in desensitization of corticotropin-releasing factor (CRF) receptor type 1 by CRF in murine corticotrophs. Endocrinology 147: 441-450.
- Nomura, T., et al. 2007. Targeting β-2-Microglobulin mediated signaling as a novel therapeutic approach for human renal cell carcinoma. J. Urol. 178: 292-300.
- 6. Huang, W.C., et al. 2008. β-2-Microglobulin signaling blockade inhibited androgen receptor axis and caused apoptosis in human prostate cancer cells. Clin. Cancer Res. 14: 5341-5347.
- Hofman-Bang, J., et al. 2010. Increased parathyroid expression of klotho in uremic rats. Kidney Int. 78: 1119-1127.

Try β -2-Microglobulin (BBM.1): sc-13565 or β -2-Microglobulin (G-10): sc-46697, our highly recommended monoclonal alternatives to β -2-Microglobulin (FL-119). Also, for AC, HRP, FITC, PE, Alexa Fluor® 488 and Alexa Fluor® 647 conjugates,

see β-2-Microglobulin (BBM.1): sc-13565.