ATPIF1 (G-13): sc-162557

The Power to Question

BACKGROUND

Mitochondrial ATP synthases (ATPases) transduce the energy contained in membrane electrochemical proton gradients into the energy required for synthesis of high-energy phosphate bonds. ATPases contain two linked complexes: F_1 , the hydrophilic catalytic core; and F_0 , the membrane-embedded protein channel. F_1 consists of three α chains and three β chains, which are weakly homologous, as well as one γ chain, one δ chain and one ϵ chain. F_0 consists of three subunits: a, b and c. A mitochondrial F_1 -ATPase inhibitor protein, ATPIF $_1$ (ATPase inhibitory factor 1), also known as IP, IF $_1$, ATPI or ATPIP (ATPase inhibitor protein), binds to the C-terminal region of a β subunit of the F_1 -ATPase at low pH values and, via interference of the β and γ subunit interaction, ATPIF1 regulates the activity of the F_1F_0 -ATPase. This reversible ATPIF1 binding to F_1F_0 -ATPase also occurs on the surface of endothelial cells.

REFERENCES

- Ichikawa, N., Ushida, S., Kawabata, M. and Masazumi, Y. 1999.
 Nucleotide sequence of cDNA coding the mitochondrial precursor protein of the ATPase inhibitor from humans. Biosci. Biotechnol. Biochem. 63: 2225-2227.
- Cabezón, E., Runswick, M.J., Leslie, A.G. and Walker, J.E. 2001. The structure of bovine IF₁, the regulatory subunit of mitochondrial F-ATPase. EMBO J. 20: 6990-6996.
- 3. Contessi, S., Haraux, F., Mavelli, I. and Lippe, G. 2005. Identification of a conserved calmodulin-binding motif in the sequence of F₁F₀ ATPsynthase inhibitor protein. J. Bioenerg. Biomembr. 37: 317-326.
- 4. Cortes-Hernández, P., Domínguez-Ramírez, L., Estrada-Bernal, A., Montes-Sánchez, D.G., Zentella-Dehesa, A., de Gómez-Puyou, M.T., Gómez-Puyou, A. and García, J.J. 2005. The inhibitor protein of the F₁F₀-ATP synthase is associated to the external surface of endothelial cells. Biochem. Biophys. Res. Commun. 330: 844-849.
- Burwick, N.R., Wahl, M.L., Fang, J., Zhong, Z., Moser, T.L., Li, B., Capaldi, R.A., Kenan, D.J. and Pizzo, S.V. 2005. An Inhibitor of the F₁ subunit of ATP synthase IF₁ modulates the activity of angiostatin on the endothelial cell surface. J. Biol. Chem. 280: 1740-1745.
- Gledhill, J.R. and Walker, J.E. 2006. Inhibitors of the catalytic domain of mitochondrial ATP synthase. Biochem. Soc. Trans. 34: 989-992.
- García, J.J., Morales-Ríos, E., Cortes-Hernandez, P. and Rodríguez-Zavala, J.S. 2006. The inhibitor protein IF₁ promotes dimerization of the mitochondrial F1F0-ATP synthase. Biochemistry 45: 12695-12703.
- Wittig, I., Carrozzo, R., Santorelli, F.M. and Schägger, H. 2006. Supercomplexes and subcomplexes of mitochondrial oxidative phosphorylation. Biochim. Biophys. Acta 1757: 1066-1072.
- Huang, L.J., Hsu, C., Tsai, T.N., Wang, S.J. and Yang, R.C. 2007.
 Suppression of mitochondrial ATPase inhibitor protein IF₁ in the liver of late septic rats. Biochim. Biophys. Acta 1767: 888-896.

CHROMOSOMAL LOCATION

Genetic locus: ATPIF1 (human) mapping to 1p35.3.

SOURCE

ATPIF1 (G-13) is an affinity purified goat polyclonal antibody raised against a peptide mapping within an internal region of ATPIF1 of human origin.

PRODUCT

Each vial contains 200 μg lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-162557 P, (100 μ g peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

APPLICATIONS

ATPIF1 (G-13) is recommended for detection of ATPIF1 of human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

Suitable for use as control antibody for ATPIF1 siRNA (h): sc-78711, ATPIF1 shRNA Plasmid (h): sc-78711-SH and ATPIF1 shRNA (h) Lentiviral Particles: sc-78711-V.

Molecular Weight of ATPIF1: 12 kDa.

Positive Controls: MCF7 whole cell lysate: sc-2206.

RECOMMENDED SECONDARY REAGENTS

To ensure optimal results, the following support (secondary) reagents are recommended: 1) Western Blotting: use donkey anti-goat IgG-HRP: sc-2020 (dilution range: 1:2000-1:100,000) or Cruz Marker™ compatible donkey anti-goat IgG-HRP: sc-2033 (dilution range: 1:2000-1:5000), Cruz Marker™ Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: sc-2333 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use donkey anti-goat IgG-FITC: sc-2024 (dilution range: 1:100-1:400) or donkey anti-goat IgG-TR: sc-2783 (dilution range: 1:100-1:400) with UltraCruz™ Mounting Medium: sc-24941.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

Try **ATPIF1** (A-3): sc-271614, our highly recommended monoclonal alternative to ATPIF1 (G-13).