NF-E2 p18 (S-16): sc-16276

The Power to Question

BACKGROUND

The nuclear DNA binding protein NF-E2 regulates expression of globulin genes in developing erythroid cells through interaction with upstream AP-1-like recognition sites. The major component of NF-E2 is a 45 kDa polypeptide, designated p45 NF-E2, that belongs to the basic region-leucine zipper family of transcription factors. This subunit of NF-E2 is specifically expressed at low levels in hematopoietic progenitor cells and differentiated cells of the erythroid, megakaryocyte and mast cell lineages. NF-E2 recognizes a site containing an intact AP-1 binding motif, preceded by a guanine two base pairs upstream. NF-E2 is apparently an obligate heterodimer of p45 NF-E2 and a widely expressed 18 kDa component that is related to the v-Maf oncogene.

REFERENCES

- Mignotte, V., et al. 1989. Two tissue-specific factors bind the erythroid promoter of the human porphobilinogen deaminase gene. Nucl. Acids Res. 17: 37-54.
- 2. Philipsen, S., et al. 1990. The β -globin dominant control region: hypersensitive site 2. EMBO J. 9: 2159-2167.
- Ney, P.A., et al. 1990. Tandem AP-1-binding sites within the human β-globin dominant control region function as an inducible enhancer in erythroid cells. Genes Dev. 4: 993-1006.
- 4. Jarman, A.P., et al. 1991. Characterization of the major regulatory element upstream of the human α -globin gene cluster. Mol. Cell Biol. 11: 4679-4689.
- Andrews, N.C., et al. 1993. Erythroid transcription factor NF-E2 is a haematopoietic-specific basic-leucine zipper protein. Nature 362: 722-728.
- Peters, L.L., et al. 1993. Mouse microcytic anaemia caused by a defect in the gene encoding the globin enhancer-binding protein NF-E2. Nature 362: 768-770.
- Andrews, N.C., et al. 1993. The ubiquitous subunit of erythroid transcription factor NF-E2 is a small basic-leucine zipper protein related to the v-Maf oncogene. Proc. Natl. Acad. Sci. USA 90: 11488-11492.

SOURCE

NF-E2 p18 (S-16) is an affinity purified goat polyclonal antibody raised against a peptide mapping at the C-terminus of NF-E2 p18 of human origin.

PRODUCT

Each vial contains 200 μg lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-16276 P, (100 μ g peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

Available as TransCruz reagent for Gel Supershift and ChIP applications, sc-16276 X, 200 $\mu g/0.1$ ml.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

APPLICATIONS

NF-E2 p18 (S-16) is recommended for detection of NF-E2 p18 (also designated MafK) of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

Suitable for use as control antibody for NF-E2 p18 siRNA (h): sc-38103 and NF-E2 p18 siRNA (m): sc-38104.

NF-E2 p18 (S-16) X TransCruz antibody is recommended for Gel Supershift and ChIP applications.

Molecular Weight of NF-E2 p18: 18 kDa.

RECOMMENDED SECONDARY REAGENTS

To ensure optimal results, the following support (secondary) reagents are recommended: 1) Western Blotting: use donkey anti-goat IgG-HRP: sc-2020 (dilution range: 1:2000-1:100,000) or Cruz Marker™ compatible donkey anti-goat IgG-HRP: sc-2033 (dilution range: 1:2000-1:5000), Cruz Marker™ Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: sc-2333 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use donkey anti-goat IgG-FITC: sc-2024 (dilution range: 1:100-1:400) or donkey anti-goat IgG-TR: sc-2783 (dilution range: 1:100-1:400) with UltraCruz™ Mounting Medium: sc-24941.

SELECT PRODUCT CITATIONS

- Papaiahgari, S., et al. 2004. NADPH oxidase and ERK signaling regulates hyperoxia-induced Nrf2-ARE transcriptional response in pulmonary epithelial cells. J. Biol. Chem. 279: 42302-42312.
- 2. de Vooght, K.M., et al. 2008. GATA-1 binding sites in exon 1 direct erythroid-specific transcription of PPOX. Gene. 409: 83-91.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com