AAT (H-7): sc-166018

The Power to Question

BACKGROUND

Cumulative damage to lung tissue by neutrophil elastase is responsible for the development of pulmonary emphysema, an irreversible lung disease character ized by loss of lung elasticity. α 1-antitrypsin (AAT), a 394 amino-acid hepatic acute phase protein, predominatly inhibits Neutrophil Elastase. AAT is highly expressed in liver and in cultured hepatoma cells and, to a lesser extent, in macrophages. ATT is a highly polymorphic glycosylated serum protein with characteristic isoelectric-focusing patterns for most variants. AAT maps to a region of human chromosome 14g32.13 that includes a related serine protease inhibitor (serpin) gene which encodes corticosteroid-binding globulin. Oxidation of the Methionine 358 residue located at the active center of AAT results in a dramatic decrease in inhibitory activity towards elastase which effectively inactivates the protective function. AAT also has a moderate affinity for plasmin and Thrombin. AAT deficiency associates with a 20-30 fold increased risk of precocious pulmonary emphysema.

CHROMOSOMAL LOCATION

Genetic locus: SERPINA1 (human) mapping to 14q32.13; Serpina1e (mouse) mapping to 12 E.

SOURCE

AAT (H-7) is a mouse monoclonal antibody raised against amino acids 216-418 mapping at the C-terminus of AAT of human origin.

PRODUCT

Each vial contains 200 μ g lgG_1 kappa light chain in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

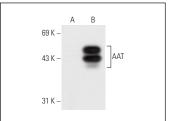
AAT (H-7) is available conjugated to agarose (sc-166018 AC), 500 µg/0.25 ml agarose in 1 ml, for IP; to HRP (sc-166018 HRP), 200 µg/ml, for WB, IHC(P) and ELISA; to either phycoerythrin (sc-166018 PE), fluorescein (sc-166018 FITC), Alexa Fluor® 488 (sc-166018 AF488), Alexa Fluor® 546 (sc-166018 AF546), Alexa Fluor® 594 (sc-166018 AF594) or Alexa Fluor® 647 (sc-166018 AF647), 200 μg/ml, for WB (RGB), IF, IHC(P) and FCM; and to either Alexa Fluor® 680 (sc-166018 AF680) or Alexa Fluor® 790 (sc-166018 AF790), 200 μg/ml, for Near-Infrared (NIR) WB, IF and FCM.

APPLICATIONS

AAT (H-7) is recommended for detection of AAT of mouse, rat and human origin by Western Blotting (starting dilution 1:100, dilution range 1:100-1:1000), immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

Suitable for use as control antibody for AAT siRNA (h): sc-40945, AAT siRNA (m): sc-40946, AAT shRNA Plasmid (h): sc-40945-SH, AAT shRNA Plasmid (m): sc-40946-SH, AAT shRNA (h) Lentiviral Particles: sc-40945-V and AAT shRNA (m) Lentiviral Particles: sc-40946-V.

Molecular Weight of luminal AAT: 51 kDa.


Molecular Weight of mature AAT: 55 kDa.

Positive Controls: AAT (h): 293 Lysate: sc-112989.

RECOMMENDED SUPPORT REAGENTS

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgGk BP-HRP: sc-516102 or m-lgGk BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz Marker™ Molecular Weight Standards: sc-2035, UltraCruz® Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunoprecipitation: use Protein A/G PLUS-Agarose: sc-2003 (0.5 ml agarose/2.0 ml). 3) Immunofluorescence: use m-lgG κ BP-FITC: sc-516140 or m-lgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz® Mounting Medium: sc-24941 or UltraCruz® Hard-set Mounting Medium: sc-359850.

DATA

AAT (H-7): sc-166018. Near-infrared western blot analysis of AAT expression in human plasma (A) and mouse lung (**B**) tissue extracts. Blocked with UltraCruz® Blocking Reagent: sc-516214. Detection reagent used: m-lgGκ BP-CFL 680: sc-516180.

---- AAT

85 K

49 K

AAT (H-7); sc-166018. Western blot analysis of AAT expression in non-transfected: sc-110760 (A) and human AAT transfected: sc-112989 (B) 293 whole cell

SELECT PRODUCT CITATIONS

- 1. Pan, J., et al. 2018. The endoplasmic reticulum co-chaperone ERdj3/ DNAJB11 promotes hepatocellular carcinoma progression through suppressing AATZ degradation. Future Oncol. 14: 3001-3013.
- 2. Pettinato, G., et al. 2019. Generation of fully functional hepatocyte-like organoids from human induced pluripotent stem cells mixed with endothelial cells. Sci. Rep. 9: 8920.
- 3. Jiang, Z., et al. 2024. Liver bioprinting within a novel support medium with functionalized spheroids, hepatic vein structures, and enhanced post-transplantation vascularization. Biomaterials 311: 122681.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.