V-ATPase B2 (C-9): sc-166122

The Boures to Overtion

BACKGROUND

Vacuolar-type H+-ATPase (V-ATPase) is a multisubunit enzyme responsible for acidification of eukaryotic intracellular organelles. V-ATPases pump protons against an electrochemical gradient, while F-ATPases reverse the process, thereby synthesizing ATP. A peripheral V₁ domain, which is responsible for ATP hydrolysis and an integral V_0 domain, which is responsible for proton translocation, compose V-ATPase. Nine subunits (A-H) make up the V₁ domain and five subunits (a, d, c, c' and c'') make up the V₀ domain. Like F-ATPase, V-ATPase most likely operates through a rotary mechanism. The V-ATPase V₁ B subunit exists as two isoforms. In the inner ear, the V-ATPase B1 isoform functions in proton secretion and is required to maintain proper endolymph pH and normal auditory function. The gene encoding the human V-ATPase B1 isoform maps to chromosome 2p13.3. Mutations in this gene cause distal renal tubular acidosis associated with sensorineural deafness. The V-ATPase B2 isoform is expressed in kidney and is the only B isoform expressed in osteoclasts. The gene encoding the human V-ATPase B2 isoform maps to chromosome 8p21.3.

CHROMOSOMAL LOCATION

Genetic locus: ATP6V1B2 (human) mapping to 8p21.3; Atp6v1b2 (mouse) mapping to 8 B3.3.

SOURCE

V-ATPase B2 (C-9) is a mouse monoclonal antibody specific for an epitope mapping between amino acids 2-38 at the N-terminus of V-ATPase B2 of human origin.

PRODUCT

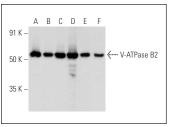
Each vial contains 200 μg lgG_3 kappa light chain in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

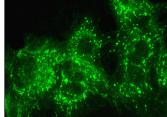
Blocking peptide available for competition studies, sc-166122 P, (100 μ g peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% stabilizer protein).

APPLICATIONS

V-ATPase B2 (C-9) is recommended for detection of V-ATPase B2 of mouse, rat and human origin by Western Blotting (starting dilution 1:100, dilution range 1:100-1:1000), immunoprecipitation [1-2 μ g per 100-500 μ g of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

V-ATPase B2 (C-9) is also recommended for detection of V-ATPase B2 in additional species, including canine and bovine.


Suitable for use as control antibody for V-ATPase B2 siRNA (h): sc-43517, V-ATPase B2 siRNA (m): sc-43518, V-ATPase B2 shRNA Plasmid (h): sc-43517-SH, V-ATPase B2 shRNA Plasmid (m): sc-43518-SH, V-ATPase B2 shRNA (h) Lentiviral Particles: sc-43517-V and V-ATPase B2 shRNA (m) Lentiviral Particles: sc-43518-V.


Molecular Weight of V-ATPase B2: 56-58 kDa.

RECOMMENDED SUPPORT REAGENTS

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz® Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunoprecipitation: use Protein A/G PLUS-Agarose: sc-2003 (0.5 ml agarose/2.0 ml). 3) Immunofluorescence: use m-lgG κ BP-FITC: sc-516140 or m-lgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz® Mounting Medium: sc-24941 or UltraCruz® Hard-set Mounting Medium: sc-359850.

DATA

V-ATPase B2 (C-9): sc-166122. Western blot analysis of V-ATPase B2 expression in SK-N-SH (**A**), HeLa (**B**), c4 (**C**), RAW 264.7 (**D**), L8 (**E**) and C6 (**F**) whole cell lysates

V-ATPase B2 (C-9): sc-166122. Immunofluorescence staining of formalin-fixed Hep G2 cells showing cytoplasmic and cytoplasmic vesicles localization.

SELECT PRODUCT CITATIONS

- Yang, N.D., et al. 2014. Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin. J. Biol. Chem. 289: 33425-33441.
- Shi, Y., et al. 2015. Critical role of CAV1/caveolin-1 in cell stress responses in human breast cancer cells via modulation of lysosomal function and autophagy. Autophagy 11: 769-784.
- 3. Hirata, H., et al. 2021. PMEPA1 and NEDD4 control the proton production of osteoclasts by regulating vesicular trafficking. FASEB J. 35: e21281.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com