Glucosidase I (C-15): sc-168007

The Power to Question

BACKGROUND

Glycosylation of asparagine residues in Asn-X-Ser/Thr motifs in proteins commonly occur in the lumen of the endoplasmic reticulum (ER). Glucosidase I catalyzes the first step in the N-linked oligosaccharide processing pathway. It specifically removes the distal α 1,2-linked glucose residue from the Glc3-Man9-GlcNAc2 oligosaccharide precursor. Glucosidase I contains a short cytosolic tail, a single pass transmembrane domain and a large C-terminal catalytic domain located on the luminal side of the ER. Mutations in the gene encoding Glucosidase I result in the congenital disorder glycosylation (CDG-Ilb), which is characterized by generalized hypotonia, dysmorphic features, hepatomegaly, hypoventilation, feeding problems, seizures and death. Two point mutations in the Glucosidase I gene have been identified and result in amino acid substitutions, namely Arg486Thr and Phe652Leu, that affect polypeptide folding and active site formation.

REFERENCES

- 1. Kalz-Füller, B., Bieberich, E. and Bause, E. 1995. Cloning and expression of Glucosidase I from human hippocampus. Eur. J. Biochem. 231: 344-351.
- Khan, F.A., Varma, G.M. and Vijay, I.K. 1999. Genomic organization and promoter activity of Glucosidase I gene. Glycobiology 9: 797-806.
- De Praeter CM, G.J., Bause, E., Nuytinck, L.K., Vliegenthart, J.F., Breuer, W., Kamerling, J.P., Espeel, M.F., Martin, J.J., De Paepe AM, N.W. and Dacremont, G.A. 2000. A novel disorder caused by defective biosynthesis of N-linked oligosaccharides due to Glucosidase I deficiency. Am. J. Hum. Genet. 66: 1744-1756.
- Völker, C., De Praeter, C.M., Hardt, B., Breuer, W., Kalz-Füller, B., Van Coster, R.N. and Bause, E. 2002. Processing of N-linked carbohydrate chains in a patient with Glucosidase I deficiency (CDG type IIb). Glycobiology 12: 473-483.
- Hardt, B., Kalz-Fuller, B., Aparicio, R., Volker, C. and Bause, E. 2003. (Arg)3
 within the N-terminal domain of Glucosidase I contains ER targeting information but is not required absolutely for ER localization. Glycobiology 13:
 159-168.
- 6. Hong, Y., Sundaram, S., Shin, D.J. and Stanley, P. 2004. The Lec23 Chinese hamster ovary mutant is a sensitive host for detecting mutations in α -Glucosidase I that give rise to congenital disorder of glycosylation IIb (CDG IIb). J. Biol. Chem. 279: 49894-49901.
- 7. Ruddock, L.W. and Molinari, M. 2006. N-glycan processing in ER quality control. J. Cell Sci. 119: 4373-4380.

CHROMOSOMAL LOCATION

Genetic locus: MOGS (human) mapping to 2p13.1; Mogs (mouse) mapping to 6 C3.

SOURCE

Glucosidase I (C-15) is an affinity purified goat polyclonal antibody raised against a peptide mapping near the C-terminus of Glucosidase I of human origin.

PRODUCT

Each vial contains 200 μg lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-168007 P, (100 μ g peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

APPLICATIONS

Glucosidase I (C-15) is recommended for detection of Glucosidase I of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000); non cross-reactive with Glucosidase II α or Glucosidase II β .

Glucosidase I (C-15) is also recommended for detection of Glucosidase I in additional species, including equine, canine and porcine.

Suitable for use as control antibody for Glucosidase I siRNA (h): sc-94835, Glucosidase I siRNA (m): sc-145445, Glucosidase I shRNA Plasmid (h): sc-94835-SH, Glucosidase I shRNA Plasmid (m): sc-145445-SH, Glucosidase I shRNA (h) Lentiviral Particles: sc-94835-V and Glucosidase I shRNA (m) Lentiviral Particles: sc-145445-V.

Molecular Weight of Glucosidase I: 92 kDa.

RECOMMENDED SECONDARY REAGENTS

To ensure optimal results, the following support (secondary) reagents are recommended: 1) Western Blotting: use donkey anti-goat IgG-HRP: sc-2020 (dilution range: 1:2000-1:100,000) or Cruz Marker™ compatible donkey anti-goat IgG-HRP: sc-2033 (dilution range: 1:2000-1:5000), Cruz Marker™ Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: sc-2333 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use donkey anti-goat IgG-FITC: sc-2024 (dilution range: 1:100-1:400) or donkey anti-goat IgG-TR: sc-2783 (dilution range: 1:100-1:400) with UltraCruz™ Mounting Medium: sc-24941.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 **Europe** +00800 4573 8000 49 6221 4503 0 **www.scbt.com**