GPAT2 (E-14): sc-168448

The Power to Question

BACKGROUND

GPAT2 (glycerol-3-phosphate acyltransferase 2, mitochondrial), also known as Gm116 or xGPAT1, is an 801 amino acid mitochondrial multi-pass membrane protein belonging to the GPAT/DAPAT family. GPAT2 is highly expressed in testis with lower levels in heart, liver, kidney, spleen and adipose cells. Inhibited by N-ethylmaleimide (NEM), GPAT2 esterifies an acyl-group from acyl-ACP to the sn-1 position of glycerol-3-phosphate, an essential step in glycerolipid biosynthesis. GPAT2 contain a HXXXXD motif, which is critical for acyltransferase activity and may constitute the binding site for the phosphate moiety of the glycerol-3-phosphate. Three isoforms of GPAT2 exist due to alternative splicing events.

REFERENCES

- Stein, T.A., Engel, R.R. and Tropp, B.E. 1992. Inhibition of glycerol-3-phosphate acyltransferase by analogs of glycerol-3-phosphate. Biochim. Biophys. Acta 1123: 249-256.
- Yet, S.F., Lee, S., Hahm, Y.T. and Sul, H.S. 1993. Expression and identification of p90 as the murine mitochondrial glycerol-3-phosphate acyltransferase. Biochemistry 32: 9486-9491.
- Dircks, L.K. and Sul, H.S. 1997. Mammalian mitochondrial glycerol-3-phosphate acyltransferase. Biochim. Biophys. Acta 1348: 17-26.
- Cao, J., Li, J.L., Li, D., Tobin, J.F. and Gimeno, R.E. 2006. Molecular identification of microsomal acyl-CoA:glycerol-3-phosphate acyltransferase, a key enzyme in *de novo* triacylglycerol synthesis. Proc. Natl. Acad. Sci. USA 103: 19695-19700.
- Harada, N., Hara, S., Yoshida, M., Zenitani, T., Mawatari, K., Nakano, M., Takahashi, A., Hosaka, T., Yoshimoto, K. and Nakaya, Y. 2007. Molecular cloning of a murine glycerol-3-phosphate acyltransferase-like protein 1 (xGPAT1). Mol. Cell. Biochem. 297: 41-51.
- Takeuchi, K. and Reue, K. 2009. Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. Am. J. Physiol. Endocrinol. Metab. 296: E1195-E1209.
- Wydysh, E.A., Medghalchi, S.M., Vadlamudi, A. and Townsend, C.A. 2009. Design and synthesis of small molecule glycerol 3-phosphate acyltransferase inhibitors. J. Med. Chem. 52: 3317-3327.

CHROMOSOMAL LOCATION

Genetic locus: GPAT2 (human) mapping to 2q11.1; Gpat2 (mouse) mapping to 2 F1.

SOURCE

GPAT2 (E-14) is an affinity purified goat polyclonal antibody raised against a peptide mapping within an internal region of GPAT2 of human origin.

PRODUCT

Each vial contains 200 μg lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-168448 P, (100 μ g peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

APPLICATIONS

GPAT2 (E-14) is recommended for detection of GPAT2 of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

GPAT2 (E-14) is also recommended for detection of GPAT2 in additional species, including equine, canine, bovine and porcine.

Suitable for use as control antibody for GPAT2 siRNA (h): sc-94904, GPAT2 siRNA (m): sc-140655, GPAT2 shRNA Plasmid (h): sc-94904-SH, GPAT2 shRNA Plasmid (m): sc-140655-SH, GPAT2 shRNA (h) Lentiviral Particles: sc-94904-V and GPAT2 shRNA (m) Lentiviral Particles: sc-140655-V.

Molecular Weight of GPAT2: 89 kDa.

RECOMMENDED SECONDARY REAGENTS

To ensure optimal results, the following support (secondary) reagents are recommended: 1) Western Blotting: use donkey anti-goat IgG-HRP: sc-2020 (dilution range: 1:2000-1:100,000) or Cruz Marker™ compatible donkey anti-goat IgG-HRP: sc-2033 (dilution range: 1:2000-1:5000), Cruz Marker™ Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: sc-2333 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use donkey anti-goat IgG-FITC: sc-2024 (dilution range: 1:100-1:400) or donkey anti-goat IgG-TR: sc-2783 (dilution range: 1:100-1:400) with UltraCruz™ Mounting Medium: sc-24941.

SELECT PRODUCT CITATIONS

1. Liao, C.C., Ou, T.T., Huang, H.P. and Wang, C.J. 2014. The inhibition of oleic acid induced hepatic lipogenesis and the promotion of lipolysis by caffeic acid via up-regulation of AMP-activated kinase. J. Sci. Food Agric. 94: 1154-1162.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 **Europe** +00800 4573 8000 49 6221 4503 0 **www.scbt.com**