γ Tubulin (C-11): sc-17787

The Power to Question

BACKGROUND

Tubulin is a major cytoskeleton component that has five distinct forms, designated $\alpha,\,\beta,\,\gamma,\,\delta$ and ϵ tubulin. α and β tubulins form heterodimers which multimerize to form a microtubule filament. There are five β Tubulin isoforms ($\beta1,\,\beta2,\,\beta3,\,\beta4A$ and $\beta4B$) that are expressed in mammalian tissues. $\beta1$ and $\beta4$ are present throughout the cytosol, $\beta2$ is present in the nuclei and nucleoplasm, and $\beta3$ is a neuron-specific cytoskeletal protein. γ Tubulin forms the gammasome, which is required for nucleating microtubule filaments at the centrosome. Both δ Tubulin and ϵ Tubulin are associated with the centrosome. δ Tubulin is a homolog of the *Chlamydomonas* δ Tubulin Uni3 and is found in association with the centrioles, whereas ϵ Tubulin localizes to the pericentriolar material. ϵ Tubulin exhibits a cell cycle-specific pattern of localization; first associating with only the older of the centrosomes in a newly duplicated pair, and later associating with both centrosomes.

CHROMOSOMAL LOCATION

Genetic locus: TUBG1/TUBG2 (human) mapping to 17q21.2; Tubg1/Tubg2 (mouse) mapping to 11 D.

SOURCE

 γ Tubulin (C-11) is a mouse monoclonal antibody raised against amino acids 269-451 of γ Tubulin of human origin.

PRODUCT

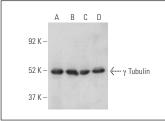
Each vial contains 200 $\mu g \; lgG_{2a}$ kappa light chain in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

 γ Tubulin (C-11) is available conjugated to agarose (sc-17787 AC), 500 $\mu g/0.25$ ml agarose in 1 ml, for IP; to HRP (sc-17787 HRP), 200 $\mu g/ml$, for WB, IHC(P) and ELISA; to either phycoerythrin (sc-17787 PE), fluorescein (sc-17787 FITC), Alexa Fluor* 488 (sc-17787 AF488), Alexa Fluor* 546 (sc-17787 AF546), Alexa Fluor* 594 (sc-17787 AF594) or Alexa Fluor* 647 (sc-17787 AF647), 200 $\mu g/ml$, for WB (RGB), IF, IHC(P) and FCM; and to either Alexa Fluor* 680 (sc-17787 AF680) or Alexa Fluor* 790 (sc-17787 AF790), 200 $\mu g/ml$, for Near-Infrared (NIR) WB, IF and FCM.

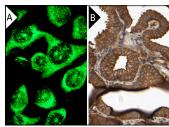
Alexa Fluor® is a trademark of Molecular Probes, Inc., Oregon, USA

APPLICATIONS

 γ Tubulin (C-11) is recommended for detection of γ Tubulin of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:200-1:2,000), immunoprecipitation [1-2 μg per 100-500 μg of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500), immunohistochemistry (including paraffin-embedded sections) (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).


Suitable for use as control antibody for γ Tubulin siRNA (h): sc-29322, γ Tubulin siRNA (m): sc-29323, γ Tubulin shRNA Plasmid (h): sc-29322-SH, γ Tubulin shRNA Plasmid (m): sc-29323-SH, γ Tubulin shRNA (h) Lentiviral Particles: sc-29322-V and γ Tubulin shRNA (m) Lentiviral Particles: sc-29323-V.


Molecular Weight of γ Tubulin: 50 kDa.


STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

DATA

γ Tubulin (C-11): sc-17787. Immunofluorescence staining of methanol-fixed HeLa cells showing cytoplasmic staining (**A**). Immunoperoxidase staining of formalin fixed, paraffin-embedded human gall bladder tissue showing cytoplasmic staining of glandular cells. Kindly provided by The Swedish Human Protein Atlas (HPA) prooram (**B**).

SELECT PRODUCT CITATIONS

- Hau, P.M., et al. 2006. Polyploidization increases the sensitivity to DNAdamaging agents in mammalian cells. FEBS Lett. 580: 4727-4736.
- Rogers, S., et al. 2015. Cyclin E2 is the predominant E-cyclin associated with NPAT in breast cancer cells. Cell Div. 10: 1.
- De Martino, M., et al. 2016. HMGA1P7-pseudogene regulates H19 and Igf2 expression by a competitive endogenous RNA mechanism. Sci. Rep. 6: 37622.
- 4. Jiao, X.F., et al. 2017. Abce1 orchestrates M-phase entry and cytoskeleton architecture in mouse oocyte. Oncotarget 8: 39012-39020.
- Klein, M.E., et al. 2018. PDLIM7 and CDH18 regulate the turnover of MDM2 during CDK4/6 inhibitor therapy-induced senescence. Oncogene 37: 5066-5078.
- 6. Gupta, D.K., et al. 2019. Septin and Ras regulate cytokinetic abscission in detached cells. Cell Div. 14: 8.
- 7. De Martino, M., et al. 2020. Characterization of HMGA1P6 transgenic mouse embryonic fibroblasts. Cell Cycle 19: 2281-2285.
- Canu, V., et al. 2021. Aberrant transcriptional and post-transcriptional regulation of SPAG5, a YAP-TAZ-TEAD downstream effector, fuels breast cancer cell proliferation. Cell Death Differ. 28: 1493-1511.
- Chien, Y.H., et al. 2022. Mechanical strain breaks planar symmetry in embryonic epithelia via polarized microtubules. Cells Dev. 170: 203791.
- Yoon, H., et al. 2023. Hydrogen peroxide inhibits hepatitis B virus replication by downregulating HBx levels via Siah-1-mediated proteasomal degradation in human hepatoma cells. Int. J. Mol. Sci. 24: 13354.

RESEARCH USE

For research use only, not for use in diagnostic procedures.