cyclin E (C-19): sc-198

The Power to Question

BACKGROUND

Cyclins were first identified in invertebrates as proteins that oscillate dramatically through the cell cycle. These proteins have been well conserved through evolution and play a critical role in regulation of cell division. Cyclin E, along with the three cyclin D proteins and cyclin C, has been shown to represent a putative G_1 cyclin on the basis of its cyclic pattern of mRNA expression, with maximal levels being detected near the G_1/S boundary. Cyclin E has been found to be associated with the transcription factor E2F in a temporally regulated manner. The cyclin E/E2F complex is detected primarily during the G_1 phase of the cell cycle and decreases as cells enter S phase. E2F is known to be a critical transcription factor for expression of several S phase specific proteins.

CHROMOSOMAL LOCATION

Genetic locus: CCNE1 (human) mapping to 19q12.

SOURCE

cyclin E (C-19) is available as either rabbit (sc-198) or goat (sc-198-G) polyclonal affinity purified antibody raised against a peptide mapping at the C-terminus of cyclin E of human origin.

PRODUCT

Each vial contains 200 μg lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-198 P, (100 µg peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

APPLICATIONS

cyclin E (C-19) is recommended for detection of cyclin E of human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1-2 μ g per 100-500 μ g of total protein (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500), immunohistochemistry (including paraffin-embedded sections) (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

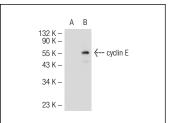
Suitable for use as control antibody for cyclin E siRNA (h): sc-29288, cyclin E shRNA Plasmid (h): sc-29288-SH and cyclin E shRNA (h) Lentiviral Particles: sc-29288-V.

Molecular Weight of cyclin E: 53 kDa.

Positive Controls: K-562 nuclear extract: sc-2130, Jurkat nuclear extract: sc-2132 or cyclin E (h2): 293T Lysate: sc-170464.

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.


PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

DATA

cyclin E (C-19)-G: sc-198-G. Western blot analysis of cyclin E expression in non-transfected: sc-117752 (A) and human cyclin E transfected: sc-170464 (B) 293T whole cell I vsates.

cyclin E (C-19): sc-198. Immunoperoxidase staining of formalin-fixed, paraffin-embedded human breast carcinoma tissue showing nuclear staining.

SELECT PRODUCT CITATIONS

- 1. Fang, F., et al. 1996. Dependence of cyclin E-Cdk2 kinase activity on cell anchorage. Science 271: 499-502.
- Li, C., et al. 2010. A bifunctional regulatory element in human somatic Wee1 mediates cyclin A/Cdk2 binding and Crm1-dependent nuclear export. Mol. Cell. Biol. 30: 116-130.
- Jeong, J.H., et al. 2010. p53-independent induction of G₁ arrest and p21WAF1/CIP1 expression by ascofuranone, an isoprenoid antibiotic, through downregulation of c-Myc. Mol. Cancer Ther. 9: 2102-2113.
- 4. Kuo, S.H., et al. 2011. Lack of compensatory pAKT activation and eIF4E phosphorylation of lymphoma cells towards mTOR inhibitor, RAD001. Eur. J. Cancer 47: 1244-1257.
- Echiburú-Chau, C., et al. 2011. Deleterious MnSOD signals lead to abnormal breast cell proliferation by radiation and estrogen exposure. Int. J. Oncol. 38: 1703-1711.
- Negis, Y., et al. 2011. Cell cycle markers have different expression and localization patterns in neuron-like PC12 cells and primary hippocampal neurons. Neurosci. Lett. 496: 135-140.
- Saddic, L.A., et al. 2011. Functional interactions between retinoblastoma and c-MYC in a mouse model of hepatocellular carcinoma. PLoS ONE 6: e19758.
- Montero, J,C, et al. 2012. Predominance of mTORC1 over mTORC2 in the regulation of proliferation of ovarian cancer cells: Mol. Cancer Ther. 11: 1342-1352.
- Freije, A., et al. 2012. Cyclin E drives human keratinocyte growth into differentiation. Oncogene 31: 5180-5192.
- Lee, J.S., et al. 2012. Generation of cancerous neural stem cells forming glial tumor by oncogenic stimulation. Stem Cell Rev. 8: 532-545.
- Foskolou, I.P., et al. 2012. Prox1 suppresses the proliferation of neuroblastoma cells via a dual action in p27-Kip1 and Cdc25A. Oncogene 32: 947-960.