Aristolochic Acid

Material Safety Data Sheet

Hazard Alert Code Key:
- EXTREME
- HIGH
- MODERATE
- LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Aristolochic Acid

STATEMENT OF HAZARDOUS NATURE

NFPA

SUPPLIER
Santa Cruz Biotechnology, Inc.
2145 Delaware Avenue
Santa Cruz, California 95060
800.457.3801 or 831.457.3800

EMERGENCY
ChemWatch
Within the US & Canada: 877-715-9305
Outside the US & Canada: +800 2436 2255
(1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS
C17-H11-N-O7, aristolochine, birthwort, "8-methoxy-6-nitrophenanthol[3, 4-d] 1, 3-dioxole-5-carboxylic acid", "3, 4-methylenedioxy-8-methoxy-10-nitro-1-phenanthreneacetylic acid", NSC-50413, "phenanthro[3, 4-d]-[1, 3-dioxole-5-carboxylic acid, 8-methoxy-6-nitro", Tardolyl, TR-1736, aristolactam

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS
<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability:</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Toxicty:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Body Contact:</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Reactivity:</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chronic:</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

CANADIAN WHMIS SYMBOLS

1 of 12
EMERGENCY OVERVIEW

RISK
Toxic if swallowed.
May cause CANCER.
Inhalation and/or skin contact may produce health damage*.
Exposure may produce irreversible effects*.
* (limited evidence).

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED
- Toxic effects may result from the accidental ingestion of the material; animal experiments indicate that ingestion of less than 40 grams may be fatal or may produce serious damage to the health of the individual.
- Limited evidence exists that this substance may cause irreversible mutations (though not lethal) even following a single exposure.
- Swallowing Aristolochia species as part of a weight-loss regime has caused rapidly worsening kidney disease with scarring. Animal testing has shown severe damage to the kidneys, withering of the spleen and thymus gland, and ulceration of the forestomach, as well as miscarriage in pregnant females (although possibly at levels that may cause harm to the mother).

EYE
- Although the material is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may cause transient discomfort characterised by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals.

SKIN
- The material is not thought to be a skin irritant (as classified by EC Directives using animal models). Abrasive damage however, may result from prolonged exposures. Good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.
- Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED
- The material is not thought to produce respiratory irritation (as classified by EC Directives using animal models). Nevertheless inhalation of dusts, or fumes, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress.
- Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS
- There is ample evidence that this material can be regarded as being able to cause cancer in humans based on experiments and other information.
- Based on laboratory and animal testing, exposure to the material may result in irreversible effects and mutations in humans.
- Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.
- Aristolochic acid may be implicated in mutations and gastric cancer.

<table>
<thead>
<tr>
<th>NAME</th>
<th>CAS RN</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aristolochic Acid</td>
<td>313-67-7</td>
<td>>98</td>
</tr>
</tbody>
</table>

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

Section 4 - FIRST AID MEASURES

SWALLOWED
Give a slurry of activated charcoal in water to drink. NEVER GIVE AN UNCONSCIOUS PATIENT WATER TO DRINK.
At least 3 tablespoons in a glass of water should be given.
Although induction of vomiting may be recommended (IN CONSCIOUS PERSONS ONLY), such a first aid measure is dissuaded due to the risk of aspiration of stomach contents. (i) It is better to take the patient to a doctor who can decide on the necessity and method of emptying the stomach. (ii) Special circumstances may however exist; these include non-availability of charcoal and the ready availability of the doctor.

NOTE: If vomiting is induced, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. NOTE: Wear protective gloves when inducing vomiting.

REFER FOR MEDICAL ATTENTION WITHOUT DELAY.

In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.
If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist.
If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS.

EYE
If this product comes in contact with the eyes:
- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN
If skin contact occurs:
- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

INHALED
- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor.

NOTES TO PHYSICIAN
■ Treat symptomatically.
for poisons (where specific treatment regime is absent):

BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 L/min.
- Monitor and treat, where necessary, for pulmonary oedema.
- Monitor and treat, where necessary, for shock.
- Anticipate seizures.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.

ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

Section 5 - FIRE FIGHTING MEASURES
FIRE INCOMPATIBILITY
May emit poisonous fumes.
burning organic material.
Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.
May emit poisonous fumes.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Foam.
Dry chemical powder.
BCF (where regulations permit).
Carbon dioxide.
Water spray or fog - Large fires only.

FIRE FIGHTING

Alert Fire Brigade and tell them location and nature of hazard.
Wear full body protective clothing with breathing apparatus.
Prevent, by any means available, spillage from entering drains or water course.
Use fire fighting procedures suitable for surrounding area.
Do not approach containers suspected to be hot.
Cool fire exposed containers with water spray from a protected location.
If safe to do so, remove containers from path of fire.
Equipment should be thoroughly decontaminated after use.
When any large container (including road and rail tankers) is involved in a fire, consider evacuation by 800 metres in all directions.

EXTINGUISHING MEDIA

- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog - Large fires only.

Vapour Pressure (mmHG): Negligible
Upper Explosive Limit (%): Not available
Specific Gravity (water=1): Not available
Lower Explosive Limit (%): Not available

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

Combustible solid which burns but propagates flame with difficulty; it is estimated that most organic dusts are combustible (circa 70%) - according to the circumstances under which the combustion process occurs, such materials may cause fires and/or dust explosions.
Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions).
Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust (420 micron or less) may burn rapidly and fiercely if ignited - particles exceeding this limit will generally not form flammable dust clouds.; once initiated, however, larger particles up to 1400 microns diameter will contribute to the propagation of an explosion.
In the same way as gases and vapours, dusts in the form of a cloud are only ignitable over a range of concentrations; in principle, the concepts of lower explosive limit (LEL) and upper explosive limit (UEL) are applicable to dust clouds but only the LEL is of practical use; - this is because of the inherent difficulty of achieving homogeneous dust clouds at high temperatures (for dusts the LEL is often called the "Minimum Explosible Concentration", MEC)
When processed with flammable liquids/vapors/mists, ignitable (hybrid) mixtures may be formed with combustible dusts. Ignitable mixtures will increase the rate of explosion pressure rise and the Minimum Ignition Energy (the minimum amount of energy required to ignite dust clouds - MIE) will be lower than the pure dust in air mixture. The Lower Explosive Limit (LEL) of the vapour/dust mixture will be lower than the individual LEIs for the vapors/mists or dusts
A dust explosion may release of large quantities of gaseous products; this in turn creates a subsequent pressure rise of explosive force capable of damaging plant and buildings and injuring people.
Usually the initial or primary explosion takes place in a confined space such as plant or machinery, and can be of sufficient force to damage or rupture the plant. If the shock wave from the primary explosion enters the surrounding area, it will disturb any settled dust layers, forming a second dust cloud, and often initiate a much larger secondary explosion. All large scale explosions have resulted from chain reactions of this type.
Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
Build-up of electrostatic charge may be prevented by bonding and grounding.
Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.
All movable parts coming in contact with this material should have a speed of less than 1-meter/sec
A sudden release of statically charged materials from storage or process equipment, particularly at elevated temperatures and/or pressure, may result in ignition especially in the absence of an apparent ignition source
One important effect of the particulate nature of powders is that the surface area and surface structure (and often moisture content) can vary widely from sample to sample, depending of how the powder was manufactured and handled; this means that it is virtually impossible to use flammability data published in the literature for dusts (in contrast to that published for gases and vapours).
Autoignition temperatures are often quoted for dust clouds (minimum ignition temperature (MIT)) and dust layers (layer ignition temperature (LIT)); LIT generally falls as the thickness of the layer increases.
Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

FIRE INCOMPATIBILITY

Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result
Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS
- Clean up waste regularly and abnormal spills immediately.
- Avoid breathing dust and contact with skin and eyes.
- Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust.
- Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- Dampen with water to prevent dusting before sweeping.
- Place in suitable containers for disposal.

MAJOR SPILLS
- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by all means available, spillage from entering drains or water courses.
- Consider evacuation (or protect in place).
- No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.
- Water spray or fog may be used to disperse / absorb vapour.
- Collect recoverable product into labelled containers for recycling.
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions).
- Minimise airborne dust and eliminate all ignition sources. Keep away from heat, hot surfaces, sparks, and flame.
- Establish good housekeeping practices.
- Remove dust accumulations on a regular basis by vacuuming or gentle sweeping to avoid creating dust clouds.
- Use continuous suction at points of dust generation to capture and minimise the accumulation of dusts. Particular attention should be given to overhead and hidden horizontal surfaces to minimise the probability of a "secondary" explosion. According to NFPA Standard 654, dust layers 1/32 in. (0.8 mm) thick can be sufficient to warrant immediate cleaning of the area.
- Do not use air hoses for cleaning.
- Minimise dry sweeping to avoid generation of dust clouds. Vacuum dust-accumulating surfaces and remove to a chemical disposal area. Vacuums with explosion-proof motors should be used.
- Control sources of static electricity. Dusts or their packages may accumulate static charges, and static discharge can be a source of ignition.
- Solids handling systems must be designed in accordance with applicable standards (e.g. NFPA including 654 and 77) and other national guidance.
- Do not empty directly into flammable solvents or in the presence of flammable vapors.
- The operator, the packaging container and all equipment must be grounded with electrical bonding and grounding systems. Plastic
bags and plastics cannot be grounded, and antistatic bags do not completely protect against development of static charges. Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

- Glass container is suitable for laboratory quantities
- Lined metal can, lined metal pail/ can.
- Plastic pail.
- Polyliner drum.
- Packing as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

For low viscosity materials

- Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.

For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.):

- Removable head packaging;
- Cans with friction closures and low pressure tubes and cartridges may be used.
- Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages *.
- In addition, where inner packagings are glass and contain liquids of packing group I and II there must be sufficient inert absorbent to absorb any spillage *
- * unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

STORAGE REQUIREMENTS

- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

The following materials had no OELs on our records

PERSONAL PROTECTION

![Respirator](image1)

RESPIRATOR

EYE

For laboratory, larger scale or bulk handling or where regular exposure in an occupational setting occurs:

- Chemical goggles
- Face shield. Full face shield may be required for supplementary but never for primary protection of eyes
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or
irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

HANDS/FEET
Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:
- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
dexterity
Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Contaminated gloves should be replaced.
Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Rubber gloves (nitrile or low-protein, powder-free latex, latex/ nitrile). Employees allergic to latex gloves should use nitrile gloves in preference.
- Double gloving should be considered.
- PVC gloves.
- Change gloves frequently and when contaminated, punctured or torn.
- Wash hands immediately after removing gloves.
- Protective shoe covers. [AS/NZS 2210]
- Head covering.

OTHER
- Employees working with confirmed human carcinogens should be provided with, and be required to wear, clean, full body protective clothing (smocks, coveralls, or long-sleeved shirt and pants), shoe covers and gloves prior to entering the regulated area. [AS/NZS ISO 6529:2006 or national equivalent]
- Employees engaged in handling operations involving carcinogens should be provided with, and required to wear and use half-face filter-type respirators with filters for dusts, mists and fumes, or air purifying canisters or cartridges. A respirator affording higher levels of protection may be substituted. [AS/NZS 1715 or national equivalent]
- Emergency deluge showers and eyewash fountains, supplied with potable water, should be located near, within sight of, and on the same level with locations where direct exposure is likely.
- Prior to each exit from an area containing confirmed human carcinogens, employees should be required to remove and leave protective clothing and equipment at the point of exit and at the last exit of the day, to place used clothing and equipment in impervious containers at the point of exit for purposes of decontamination or disposal. The contents of such impervious containers must be identified with suitable labels. For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood.
- Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood.
- For quantities up to 500 grams a laboratory coat may be suitable.
- For quantities up to 1 kilogram a disposable laboratory coat or coverall of low permeability is recommended. Coveralls should be buttoned at collar and cuffs.
- For quantities over 1 kilogram and manufacturing operations, wear disposable coverall of low permeability and disposable shoe covers.
- For manufacturing operations, air-supplied full body suits may be required for the provision of advanced respiratory protection.
- Eye wash unit.
- Ensure there is ready access to an emergency shower.
- For Emergencies: Vinyl suit

ENGINEERING CONTROLS
- For potent pharmacological agents:
 Powder handling operations are to be done in a powders weighing hood, a glove box, or other equivalent ventilated containment system.
 In situations where these ventilated containment hoods have not been installed, a non-ventilated enclosed containment hood should be used.
 Pending changes resulting from additional air monitoring data, up to 300 mg can be handled outside of an enclosure provided that no grinding, crushing or other dust-generating process occurs.
 An air-purifying respirator should be worn by all personnel in the immediate area in cases where non-ventilated containment is used, where significant amounts of material (e.g., more than 2 grams) are used, or where the material may become airborne (as through grinding, etc.).
 Powder should be put into solution or a closed or covered container after handling.
 For quantities up to and including 1 kilogram, a laboratory coat or coverall of low permeability is recommended. For handling of quantities over 1 kilogram and manufacturing operations, wear disposable coveralls of low permeability and disposable shoe covers. Air-supplied full body suits may be required for the provision of advanced respiratory protection.

Solutions Handling:
Solutions can be handled outside a containment system or without local exhaust ventilation during procedures with no potential for aerosolisation. If the procedures have a potential for aerosolisation, an air-purifying respirator is to be worn by all personnel in the immediate area.

Solutions used for procedures where aerosolisation may occur (e.g., vortexing, pumping) are to be handled within a containment system or with local exhaust ventilation.

In situations where this is not feasible (may include animal dosing), an air-purifying respirator is to be worn by all personnel in the immediate area. If using a ventilated enclosure that has not been validated, wear a half-mask respirator equipped with HEPA cartridges until the enclosure is validated for use.

Ensure gloves are protective against solvents in use.

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

- Process controls which involve changing the way a job activity or process is done to reduce the risk.
- Enclosure and/or isolation of emission source which keeps a selected hazard “physically” away from the worker and ventilation that strategically “adds” and “removes” air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly.

The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

Employees exposed to confirmed human carcinogens should be authorized to do so by the employer, and work in a regulated area.

Work should be undertaken in an isolated system such as a “glove-box”. Employees should wash their hands and arms upon completion of the assigned task and before engaging in other activities not associated with the isolated system.

Within regulated areas, the carcinogen should be stored in sealed containers, or enclosed in a closed system, including piping systems, with any sample ports or openings closed while the carcinogens are contained within.

Open-vessel systems are prohibited.

Each operation should be provided with continuous local exhaust ventilation so that air movement is always from ordinary work areas to the operation.

Exhaust air should not be discharged to regulated areas, non-regulated areas or the external environment unless decontaminated.

Clean make-up air should be introduced in sufficient volume to maintain correct operation of the local exhaust system.

For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood.

Except for outdoor systems, regulated areas should be maintained under negative pressure (with respect to non-regulated areas).

Local exhaust ventilation requires make-up air be supplied in equal volumes to replaced air.

Laboratory hoods must be designed and maintained so as to draw air inward at an average linear face velocity of 0.76 m/sec with a minimum of 0.64 m/sec. Design and construction of the fume hood requires that insertion of any portion of the employees body, other than hands and arms, be disallowed.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Properties</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>Solid</td>
</tr>
<tr>
<td>Does not mix with water.</td>
<td></td>
</tr>
<tr>
<td>Molecular Weight</td>
<td>341.27</td>
</tr>
<tr>
<td>Melting Range (°F)</td>
<td>Not available</td>
</tr>
<tr>
<td>Viscosity</td>
<td>Not available</td>
</tr>
<tr>
<td>Boiling Range (°F)</td>
<td>Not available</td>
</tr>
<tr>
<td>Solubility in water (g/L)</td>
<td>Partly miscible</td>
</tr>
<tr>
<td>Flash Point (°F)</td>
<td>Not available</td>
</tr>
<tr>
<td>pH (1% solution)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Decomposition Temp (°F)</td>
<td>Not available</td>
</tr>
<tr>
<td>pH (as supplied)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Autoignition Temp (°F)</td>
<td>Not available</td>
</tr>
<tr>
<td>Vapour Pressure (mmHG)</td>
<td>Negligible</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not available</td>
</tr>
<tr>
<td>Specific Gravity (water=1)</td>
<td>Not available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not available</td>
</tr>
<tr>
<td>Relative Vapour Density (air=1)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Volatile Component (%vol)</td>
<td>Negligible</td>
</tr>
<tr>
<td>Evaporation Rate</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

APPEARANCE

Leaflets; do not mix well with water. Soluble in alcohol, chloroform, ether, acetone, acetic acid, aniline, alkalies.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY
Presence of incompatible materials.
Product is considered stable.
Hazardous polymerisation will not occur.

STORAGE INCOMPATIBILITY
- Avoid reaction with oxidising agents

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

aristolochic acid-I

TOXICITY AND IRRITATION

ARISTOLOCHIC ACID-I:
- unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

<table>
<thead>
<tr>
<th>Toxicity</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral (rat) LD50: 184 mg/kg</td>
<td>Nil Reported</td>
</tr>
<tr>
<td>Intravenous (rat) LD50: 74 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Oral (mouse) LD50: 55.9 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Intraperitoneal (mouse) LD50: 14.32 mg/kg</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Substance has been shown to be mutagenic in at least one assay, or belongs to a family of chemicals producing damage or change to cellular DNA.

- Intravenous (man) LDLo: 3 mg/kg/2d - I
- Equivocal tumorigen by RTECS criteria
- Respiratory tract and gastrointestinal tumours, change in kidney tubules, somnolence, ataxia, dyspnea, respiratory depression, respiratory stimulation, muscle weakness recorded.

CARCINOGEN

Aristolochic acid (NB: Overall evaluation upgraded to Group 1 based on mechanistic and other relevant data)

International Agency for Research on Cancer (IARC) - Agents Reviewed by the IARC Monographs

<table>
<thead>
<tr>
<th>Group 1</th>
</tr>
</thead>
</table>

US Environmental Defense Scorecard Recognized Carcinogens

Reference(s) P65

ARISTOLOCHIC ACID

US - Maine Chemicals of High Concern List

Carcinogen

aristolochic acid-I

US - Maine Chemicals of High Concern List

Carcinogen CA Prop 65; IARC

Section 12 - ECOLOGICAL INFORMATION

This material and its container must be disposed of as hazardous waste.

Ecotoxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
<th>Bioaccumulation</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>aristolochic acid-I</td>
<td>HIGH</td>
<td>No Data Available</td>
<td>LOW</td>
<td>MED</td>
</tr>
</tbody>
</table>

GESAMP/EHS COMPOSITE LIST - GESAMP Hazard Profiles

<table>
<thead>
<tr>
<th>Name / EHS Cas No / RTECS No</th>
<th>TRN</th>
<th>A1a</th>
<th>A1b</th>
<th>A1</th>
<th>A2</th>
<th>B1</th>
<th>B2</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>E1</th>
<th>E2</th>
<th>E3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poly(2+) 224/6 cyclic aromati</td>
<td>574</td>
<td>4</td>
<td>4</td>
<td>NR</td>
<td>Ni</td>
<td>(4)</td>
<td>(1)</td>
<td>(1)</td>
<td>(2)</td>
<td>(1)</td>
<td>(1)</td>
<td>CM</td>
<td>S</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9 of 12
Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions
All waste must be handled in accordance with local, state and federal regulations.

- Containers may still present a chemical hazard/danger when empty.
- Return to supplier for reuse/recycling if possible.

Otherwise:
- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- Where possible retain label warnings and MSDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate:
- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. In most instances the supplier of the material should be consulted.
- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licenced to accept chemical and/or pharmaceutical wastes or Incineration in a licenced apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

DOT:

<table>
<thead>
<tr>
<th>Symbols:</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification Numbers:</td>
<td>UN1544</td>
</tr>
<tr>
<td>Hazard class or Division:</td>
<td>6.1</td>
</tr>
<tr>
<td>PG:</td>
<td>III</td>
</tr>
<tr>
<td>Label Codes:</td>
<td>6.1</td>
</tr>
<tr>
<td>Special provisions:</td>
<td>IB8, IP3, T1, TP33</td>
</tr>
<tr>
<td>Packaging: Exceptions:</td>
<td>153</td>
</tr>
<tr>
<td>Packaging: Non-bulk:</td>
<td>213</td>
</tr>
<tr>
<td>Quantity limitations:</td>
<td>100 kg</td>
</tr>
<tr>
<td>Passenger aircraft/roll:</td>
<td></td>
</tr>
<tr>
<td>Cargo aircraft only:</td>
<td>200 kg</td>
</tr>
<tr>
<td>Vessel stowage: Location:</td>
<td>A</td>
</tr>
<tr>
<td>Vessel stowage: Other:</td>
<td>None</td>
</tr>
</tbody>
</table>

Hazardous materials descriptions and proper shipping names:
Alkaloids, solid, n.o.s. or Alkaloid salts, solid, n.o.s. poisonous
Air Transport IATA:

<table>
<thead>
<tr>
<th>ICAO/IATA Class:</th>
<th>6.1</th>
<th>ICAO/IATA Subrisk:</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN/ID Number:</td>
<td>1544</td>
<td>Packing Group:</td>
<td>III</td>
</tr>
<tr>
<td>Special provisions:</td>
<td>A3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cargo Only

<table>
<thead>
<tr>
<th>Packing Instructions:</th>
<th>677</th>
<th>Maximum Qty/Pack:</th>
<th>200 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger and Cargo</td>
<td></td>
<td>Passenger and Cargo</td>
<td></td>
</tr>
<tr>
<td>Packing Instructions:</td>
<td>670</td>
<td>Maximum Qty/Pack:</td>
<td>100 kg</td>
</tr>
<tr>
<td>Passenger and Cargo</td>
<td></td>
<td>Passenger and Cargo</td>
<td></td>
</tr>
<tr>
<td>Limited Quantity</td>
<td></td>
<td>Limited Quantity</td>
<td></td>
</tr>
<tr>
<td>Packing Instructions:</td>
<td>Y645</td>
<td>Maximum Qty/Pack:</td>
<td>10 kg</td>
</tr>
</tbody>
</table>

Shipping name: ALKALOIDS, SOLID, N.O.S. or ALKALOID SALTS, SOLID, N.O.S. (contains aristolochic acid-I)

Maritime Transport IMDG:

<table>
<thead>
<tr>
<th>IMDG Class:</th>
<th>6.1</th>
<th>IMDG Subrisk:</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN Number:</td>
<td>1544</td>
<td>Packing Group:</td>
<td>III</td>
</tr>
<tr>
<td>EMS Number:</td>
<td>F-A,S-A</td>
<td>Special provisions:</td>
<td>43 223 274</td>
</tr>
</tbody>
</table>

Limited Quantities: 5 kg

Shipping name: ALKALOIDS, SOLID, N.O.S. or ALKALOID SALTS, SOLID, N.O.S. (contains aristolochic acid-I)

Section 15 - REGULATORY INFORMATION

aristolochic acid-I (CAS: 313-67-7, 61117-05-3) is found on the following regulatory lists:

- Canada - Alberta Ambient Air Quality Guidelines
- Canada - Alberta Ambient Air Quality Objectives
- Canada - British Columbia Occupational Exposure Limits
- Canada - Ontario Occupational Exposure Limits
- Canada - Quebec Permissible Exposure Values for Airborne Contaminants (English)
- Canada List of Prohibited and Restricted Cosmetic Ingredients (The Cosmetic Ingredient "Hotlist")
- Canada National Pollutant Release Inventory (NPRI)
- GESAMP/EHS Composite List - GESAMP Hazard Profiles
- IMO Provisional Categorization of Liquid Substances - List 2: Pollutant only mixtures containing at least 99% by weight of components already assessed by IMO
- IMO Provisional Categorization of Liquid Substances - List 3: (Trade-named) mixtures containing at least 99% by weight of components already assessed by IMO, presenting safety hazards
- International Agency for Research on Cancer (IARC) - Agents Reviewed by the IARC Monographs
- US - California Occupational Safety and Health Regulations (CAL/OSHA) - Hazardous Substances List
- US - California Permissible Exposure Limits for Chemical Contaminants
- US - California Proposition 65 - Carcinogens
- US - California Proposition 65 - Priority List for the Development of NSRLs for Carcinogens
- US - California Toxic Air Contaminant List Category III
- US - Maine Chemicals of High Concern List
- US - Michigan Exposure Limits for Air Contaminants
- US - Oregon Permissible Exposure Limits (Z-1)
- US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants
- US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants
- US Clean Air Act - Hazardous Air Pollutants
- US Clean Air Act (CAA) National Ambient Air Quality Standards (NAAQS)
- US EPA Toxic Chemical Release Inventory Persistent Bioaccumulative Toxic Chemical (PBT) List
- US EPCRA Section 313 Chemical List
- US List of Lists - Consolidated List of Chemicals Subject to EPCRA, CERCLA and Section 112(r) of the Clean Air Act
- US National Toxicology Program (NTP) 12th Report Part A Known to be Human Carcinogens

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Inhalation and/or skin contact may produce health damage*
- Exposure may produce irreversible effects*

* (limited evidence)

Denmark Advisory list for selfclassification of dangerous substances

<table>
<thead>
<tr>
<th>Substance</th>
<th>CAS</th>
<th>Suggested codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>aristolochic acid-I</td>
<td>313-67-7</td>
<td>T, R25</td>
</tr>
</tbody>
</table>
Ingredients with multiple CAS Nos

<table>
<thead>
<tr>
<th>Ingredient Name</th>
<th>CAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>aristolochic acid-I</td>
<td>313-67-7, 61117-05-3</td>
</tr>
</tbody>
</table>

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

For detailed advice on Personal Protective Equipment, refer to the following U.S. Regulations and Standards:

- OSHA Standards - 29 CFR:
 - 1910.132 - Personal Protective Equipment - General requirements
 - 1910.133 - Eye and face protection
 - 1910.134 - Respiratory Protection
 - 1910.136 - Occupational foot protection
 - 1910.138 - Hand Protection
 - Eye and face protection - ANSI Z87.1
 - Foot protection - ANSI Z41
 - Respirators must be NIOSH approved.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

www.Chemwatch.net

Issue Date: Sep-22-2009
Print Date: Mar-15-2012