Simvastatin

sc-200829

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Simvastatin

STATEMENT OF HAZARDOUS NATURE

SUPPLIER
Company: Santa Cruz Biotechnology, Inc.
Address:
2145 Delaware Ave
Santa Cruz, CA 95060
Telephone: 800.457.3801 or 831.457.3800
Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305
Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE
Lipid regulating agent. Isolated from Aspergillus terreus. Acts as a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG CoA reductase) and thus inhibits the synthesis of cholesterol; low density lipoprotein (LDL) is thus reduced and increases or unchanged levels of HDL also occur.

SYNONYMS
C25-H38-O5, "butanoic acid, 2,2-dimethyl-", 1, 2, 3, 7, 8, 8a-hexahydro-3, 7-dimethyl-", "butanoic acid, 2, 2-dimethyl-", 1, 2, 3, 7, 8, 8a-hexahydro-3, 7-dimethyl-", 8-[2-(tetrahydro-4-hydroxy-6-oxo-2H-pyran-2-yl)ethyl]-1-naphthalenyl, "ester(1S-(1alpha, 3alpha, 7beta, 8beta(2S*, 4S*), 8abeta))-", 8-[2-(tetrahydro-4-hydroxy-6-oxo-2H-pyran-2-yl)ethyl]-1-naphthalenyl, "ester(1S-(1alpha, 3alpha, 7beta, 8beta(2S*, 4S*), 8abeta))-", 8-(2-(1alpha(betaS*, deltaS*)2alpha, 6beta, 8beta, 8aalpha))-8-(2, 2"-, dimethyl-, "(1S-(1alpha(betaS*, deltaS*)2alpha, 6beta, 8beta, 8aalpha))-8-(2, 2"-, dimethyl-, "(1S-(1alpha(betaS*, deltaS*)2alpha, 6beta, 8beta, 8aalpha))-8-(2, 2"-, dimethyl-, "(1S-(1alpha(betaS*, deltaS*)2alpha, 6beta, 8beta, 8aalpha))-8-(2, 2"-, dimethyl-, "1-oxobutoxy)-1, 2, 6, 7, 8, 8a-hexahydro-beta, delta-dihydroxy-2, 6"-, "dimethyl-1-naphthaleneheptanoic acid", "1-oxobutoxy)-1, 2, 6, 7, 8, 8a-hexahydro-beta, delta-dihydroxy-2, 6"-, "dimethyl-1-naphthaleneheptanoic acid", L-644128-OOOU, L-644128-OOOU, MK-733, MK-0733, Zocor, "lipid regulating agent/ cholesterol biosynthesis inhibitor/ hypolipidaemic", "HMG CoA reductase inhibitor", Zimstat

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW
RISK
Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

POTENTIAL HEALTH EFFECTS
ACUTE HEALTH EFFECTS

SWALLOWED
- Accidental ingestion of the material may be damaging to the health of the individual.
- HMG-CoA inhibitor poisoning may cause headache, an itchy rash, and stomach upset. Muscles may be inflamed, especially in liver disease. This and related pain should be promptly reported. Liver damage has been associated with this kind of drug, but there is usually no obstruction of bile. Muscle involvement often occurs with concurrent treatment with erythromycin, cyclosporine, vitamin B3 (niacin) or fibrates. Symptoms of the nervous symptoms include impaired and jerky eye movements and facial sensation, tremor, vertigo, memory loss, “pins and needles”, paralysis and numbness of the extremities, anxiety, sleep disturbance and depression. Allergic reactions are rare and may cause anaphylactic shock, skin swelling, a “butterfly rash” on the face, muscle and joint pain, progressive muscular weakness with chronic inflammation, inflammation of blood vessels, skin hemorrhage, loss of white blood cells and platelets, anemia, joint pain and inflammation, changes in white blood cell distribution, blistering, redness, general unwellness and breathing difficulties. Gastrointestinal symptoms include inflammation of the pancreas and liver (including chronic hepatitis), obstructive jaundice, and rarely, cirrhosis with permanent liver damage and liver cancer. Nausea, vomiting and loss of appetite can occur. Skin changes include the appearance of nodules, discoloration, changes to the hair/nails, hair loss, and itch. In the eyes, the lens may become clouded, and movement of the eyeball may be impaired with dropping eyelids. There may be loss of sexual drive, inability to sustain an erection and breast development in males, although rare.

EYE
- Although the material is not thought to be an irritant, direct contact with the eye may cause transient discomfort characterized by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals.

SKIN
- The material may cause moderate inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterized by redness, swelling and blistering.
- Skin contact is not thought to have harmful health effects, however the material may still produce health damage following entry through wounds, lesions or abrasions.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED
- The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified using animal models). Nevertheless, adverse effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS
- Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment.

There is some evidence that human exposure to the material may result in developmental toxicity. This evidence is based on animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray. Exposure to the material for prolonged periods may cause physical defects in the developing embryo (teratogenesis).

HMG-CoA inhibitors may cause pain, tenderness, weakness and disease of the muscles. They may cause birth defects and affect fetal development, so they should not be used while pregnant or breast feeding. Cancer of the liver may be caused in high doses as well as growths in the lungs and eyes.

Chronic oral toxicity studies conducted on rats show increased liver weights, lesions of the non-glandular stomach, liver and thyroid tumours.

Simvastatin rarely produces muscle complaints.

Mice showed increased incidences of liver malignancy and benign adenomas of the lungs and Harderian gland (rodent eye gland). Dogs showed increased liver enzyme levels and low incidences of lens opacities, nerve degeneration and testicular degeneration. There was no evidence of teratogenicity in rats or rabbits at dosages 6 and 4 times greater than the recommended human dose of the parent compound.

In a 53 week gavage study in rats, increased liver weight was seen in female rats given 12.5 mg/kg b.i.d. and 2.5 mg/kg b.i.d. No other treatment related effects were seen.

Oral teratogenicity showed no effects in rats and rabbits. The no-effect-level for maternal and embryo toxicity in rats is 6.75 mg/kg b.i.d. and 10 mg/kg/day b.i.d. in rabbits.

The material produced negative results in the Ames microbial mutagenicity test, both with and without metabolic activation.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Toxicity</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Body Contact</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Reactivity</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

NAME

CAS RN

%
Section 4 - FIRST AID MEASURES

SWALLOWED

- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Seek medical advice.

EYE

- If this product comes in contact with the eyes:
 - Wash out immediately with fresh running water.
 - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
 - If pain persists or recurs seek medical attention.
 - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin contact occurs:
 - Immediately remove all contaminated clothing, including footwear.
 - Flush skin and hair with running water (and soap if available).
 - Seek medical attention in event of irritation.

INHALED

- If dust is inhaled, remove from contaminated area.
- Encourage patient to blow nose to ensure clear passage of breathing.
- If irritation or discomfort persists seek medical attention.

NOTES TO PHYSICIAN

- Treat symptomatically.
 The first clinical effect of simvastatin is a reduction in serum cholesterol. Changes in liver function tests may occur with long-term exposure. Myopathy should be considered in persons with complaints of diffuse myalgia, muscle tenderness or weakness, and/or marked elevation of CPK. Potential drug interactions can occur in persons taking cyclosporin, anticoagulants, antifungal agents, fibric acid derivatives, or large doses of niacin or nicotinic acid.

Section 5 - FIRE FIGHTING MEASURES

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapour Pressure (mmHG)</td>
<td>Negligible</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not available.</td>
</tr>
<tr>
<td>Specific Gravity (water=1)</td>
<td>Not available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not available</td>
</tr>
</tbody>
</table>

EXTINGUISHING MEDIA

- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog - Large fires only.

FIRE FIGHTING

- Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), other pyrolysis products typical of burning organic material.
FIRE INCOMPATIBILITY

- Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:
Chemical goggles.

Gloves:

Respirator:
Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Environmental hazard - contain spillage.
- Clean up waste regularly and abnormal spills immediately.
- Avoid breathing dust and contact with skin and eyes.
- Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust.
- Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- Damper with water to prevent dusting before sweeping.
- Place in suitable containers for disposal.

MAJOR SPILLS

- Environmental hazard - contain spillage.
- Moderate hazard.
- CAUTION: Advise personnel in area.
- Alert Emergency Responders and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL

WARNING
MAY DECOMPOSE EXPLOSIVELY AT HIGH TEMPERATURES.

PROTECTIVE ACTION ZONE

From IERG (Canada/Australia)

<table>
<thead>
<tr>
<th>Isolation Distance</th>
<th>Downwind Protection Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 meters</td>
</tr>
</tbody>
</table>

FOOTNOTES

1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.
2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.
3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.
4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder.
6 IERG information is derived from CANUTEC - Transport Canada.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.
AEGL 2: The airborne concentration of a substance above which it is predicted...
that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.
- Do NOT cut, drill, grind or weld such containers
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS
- Glass container.
- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS
The following materials had no OELs on our records
• simvastatin: CAS:79902-63-8

MATERIAL DATA
SIMVASTATIN:
- It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.
At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.
Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers’ responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and
elimination half-life. However, this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA. OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances, thus increasing the risk of overexposure.

Airborne particulate or vapor must be kept to levels as low as is practicably achievable given access to modern engineering controls and monitoring hardware. Biologically active compounds may produce idiosyncratic effects which are entirely unpredictable on the basis of literature searches and prior clinical experience (both recent and past).

CEL TWA: 0.025 mg/m³ (Merck, Sharp and Dohme)

In clinical studies, doses of 2.5 to 80 mg per day have been administered. A precise no-observed-effect-level (NOEL) has not been established. Clinical data support in vitro data which indicates that the material is twice as potent as lovastatin in terms of cholesterol reduction. Percentage reduction in cholesterol is related to dosage, however variability ranges between 10-15%. The frequency of elevation in SGPT is less than those seen with lovastatin. Since a precise NOEL is not available, the recommended exposure limit was based on a 2-fold reduction of the NOEL for lovastatin. The exposure limit is therefore 0.025 mg/m³ as an 8 hour TWA; this limit includes a 10-fold safety factor.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

- When handling very small quantities of the material eye protection may not be required.
- For laboratory, larger scale or bulk handling or where regular exposure in an occupational setting occurs:
 - Chemical goggles
 - Face shield. Full face shield may be required for supplementary but never for primary protection of eyes
 - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience.
 - Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]

HANDS/FEET

- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
 - frequency and duration of contact,
 - chemical resistance of glove material,
 - glove thickness and
dexterity
- Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
 - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
 - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
 - Rubber gloves (nitrile or low-protein, powder-free latex). Employees allergic to latex gloves should use nitrile gloves in preference.
 - Double gloving should be considered.
 - PVC gloves.
 - Protective shoe covers.
 - Head covering.

OTHER

- For quantities up to 500 grams a laboratory coat may be suitable.
- For quantities up to 1 kilogram a disposable laboratory coat or coverall of low permeability is recommended. Coveralls should be buttoned at collar and cuffs.
- For quantities over 1 kilogram and manufacturing operations, wear disposable coverall of low permeability and disposable shoe covers.
- For manufacturing operations, air-supplied full body suits may be required for the provision of advanced respiratory protection.
- Eye wash unit.
- Ensure there is ready access to an emergency shower.
- For Emergencies: Vinyl suit

- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protective equipment. These may be government mandated or vendor recommended.

Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.

Use approved positive flow masks if significant quantities of dust becomes airborne.

Try to avoid creating dust conditions.

PHYSICAL PROPERTIES

- Solid.
- Does not mix with water.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

ENGINEERING CONTROLS

- Enclosed local exhaust ventilation is required at points of dust, fume or vapor generation.
- HEPA terminated local exhaust ventilation should be considered at point of generation of dust, fumes or vapors.

Barrier protection or laminar flow cabinets should be considered for laboratory scale handling.

The need for respiratory protection should also be assessed where incidental or accidental exposure is anticipated: Dependent on levels of contamination, PAPR, full face air purifying devices with P2 or P3 filters or air supplied respirators should be evaluated.

Fume-hoods and other open-face containment devices are acceptable when face velocities of at least 1 m/s (200 feet/minute) are achieved. Partitions, barriers, and other partial containment technologies are required to prevent migration of the material to uncontrolled areas. For non-routine emergencies maximum local and general exhaust are necessary. Air contaminants generated in the workplace possess varying “escape” velocities which, in turn, determine the “capture velocities” of fresh circulating air required to effectively remove the contaminant.

<table>
<thead>
<tr>
<th>Protection Factor</th>
<th>Half-Face Respirator</th>
<th>Full-Face Respirator</th>
<th>Powered Air Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 x PEL</td>
<td>P1</td>
<td>-</td>
<td>PAPR-P1</td>
</tr>
<tr>
<td></td>
<td>Air-line*</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>50 x PEL</td>
<td>Air-line**</td>
<td>P2</td>
<td>PAPR-P2</td>
</tr>
<tr>
<td>100 x PEL</td>
<td>-</td>
<td>P3</td>
<td>-</td>
</tr>
<tr>
<td>100+ x PEL</td>
<td>-</td>
<td>Air-line*</td>
<td>-</td>
</tr>
</tbody>
</table>

* - Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:

- Class 1 low to medium absorption capacity filters.
- Class 2 medium absorption capacity filters.
- Class 3 high absorption capacity filters.
- PAPR Powered Air Purifying Respirator (positive pressure) cartridge.
- Type A for use against certain organic gases and vapors.
- Type B for use against certain inorganic gases and other acid gases and vapors.
- Type C for use against sulfur dioxide and other acid gases and vapors.
- Type K for use against ammonia and organic ammonia derivatives.
- Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.
- Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.
- Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

Respirator

- Powered Air Respirator (positive pressure) cartridge.

Type of Collectant:

<table>
<thead>
<tr>
<th>Air Speed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>solvent, vapors, etc. evaporating from tank (in still air)</td>
</tr>
<tr>
<td>aerosols, fumes from pouring operations, intermittent container filling, low speed conveyor transfers (released at low velocity into zone of active generation)</td>
</tr>
<tr>
<td>direct spray, drum filling, conveyor loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)</td>
</tr>
</tbody>
</table>

Within each range the appropriate value depends on:

<table>
<thead>
<tr>
<th>Lower end of the range</th>
<th>Upper end of the range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Room air currents minimal or favourable to capture</td>
<td>1: Disturbing room air currents</td>
</tr>
<tr>
<td>2: Contaminants of low toxicity or of nuisance value only.</td>
<td>2: Contaminants of high toxicity</td>
</tr>
<tr>
<td>3: Intermittent, low production.</td>
<td>3: High production, heavy use</td>
</tr>
<tr>
<td>4: Large hood or large air mass in motion</td>
<td>4: Small hood-local control only</td>
</tr>
</tbody>
</table>

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2.5 m/s (200-500 f/min.) for extraction of gases discharged 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

State	Divided solid	Molecular Weight	418.58
Melting Range (°F) | 275- 280.4 | Viscosity | Not Applicable
Boiling Range (°F) | Not available | Solubility in water (g/L) | Partly miscible
Flash Point (°F) | Not available | pH (1% solution) | Not applicable
Decomposition Temp (°F) | Not Available | pH (as supplied) | Not applicable
Autoignition Temp (°F) | 755.6 | Vapour Pressure (mmHG) | Negligible
Upper Explosive Limit (%) | Not available. | Specific Gravity (water=1) | Not available
Lower Explosive Limit (%) | Not available | Relative Vapor Density (air=1) | >1
Volatile Component (%vol) | Negligible | Evaporation Rate | Not applicable

APPEARANCE
White to off-white crystalline powder; does not mix well with water (0.03 mg/l).

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY
- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY
- Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

simvastatin

TOXICITY AND IRRITATION
- unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

<table>
<thead>
<tr>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral (mouse) LD50: 5000 mg/kg *</td>
<td>Skin (rabbit): slight - moderate*</td>
</tr>
<tr>
<td>Eye (rabbit): slight *</td>
<td></td>
</tr>
</tbody>
</table>

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. Exposure to the material for prolonged periods may cause physical defects in the developing embryo (teratogenesis).

CARCINOGEN

<table>
<thead>
<tr>
<th>SIMVASTATIN</th>
<th>US Environmental Defense Scorecard Suspected Carcinogens</th>
<th>Reference(s)</th>
<th>P65-CAND</th>
</tr>
</thead>
</table>

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

SIMVASTATIN:
- Toxics to aquatic organisms. may cause long-term adverse effects in the aquatic environment.
- Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.
- Wastes resulting from use of the product must be disposed of on site or at approved waste sites.
- DO NOT discharge into sewer or waterways.

Ecotoxicology:
- Daphnia magna LC50: 5.9 mg/l - toxic

Ecotoxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
<th>Bioaccumulation</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>simvastatin</td>
<td>HIGH</td>
<td>HIGH</td>
<td>MED</td>
<td></td>
</tr>
</tbody>
</table>

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions
All waste must be handled in accordance with local, state and federal regulations.
- Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.
- A Hierarchy of Controls seems to be common - the user should investigate:
 - Reduction
 - Reuse
 - Recycling
 - Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change
in use, and recycling or reuse may not always be appropriate. DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

DOT:

Symbols:	G
Hazard class or Division:	9
Identification Numbers:	UN3077
PG:	III
Label Codes:	9
Special provisions:	8, 146, 335, B54, IB8, IP3, N20, T1, TP33
Packaging: Exceptions:	155
Packaging: Non-bulk:	213
Packaging: Exceptions:	155
Quantity limitations:	No limit
Cargo aircraft only:	No limit
Vessel stowage: Location:	A

Air Transport IATA:

ICAO/IATA Class:	9
ICAO/IATA Subrisk:	None
UN/ID Number:	3077
Packing Group:	III
Special provisions:	A97

Maritime Transport IMDG:

IMDG Class:	9
IMDG Subrisk:	None
UN Number:	3077
Packing Group:	III
EMS Number:	F-A,S-F
Special provisions:	274 909 944
Limited Quantities:	5 kg

Section 15 - REGULATORY INFORMATION

simvastatin (CAS: 79902-63-9) is found on the following regulatory lists:

"GESAMP/EHS Composite List - GESAMP Hazard Profiles"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Ingestion may produce health damage*.
- Cumulative effects may result following exposure*.
- May produce skin discomfort*.
- Limited evidence of a carcinogenic effect*.
- May be harmful to the fetus/embryo*.
 * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.
- A list of reference resources used to assist the committee may be found at:
The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Jul-22-2008
Print Date: Apr-21-2010