Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Gefitinib

STATEMENT OF HAZARDOUS NATURE

NFPA

SUPPLIER
Company: Santa Cruz Biotechnology, Inc.
Address:
2145 Delaware Ave
Santa Cruz, CA 95060
Telephone: 800.457.3801 or 831.457.3800
Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305
Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE
- Epidermal Growth Factor (EGF) results in cellular proliferation, differentiation, and survival. EGF is a low-molecular-weight polypeptide first purified from the mouse submandibular gland, but since then found in many human tissues including submandibular gland, parotid gland. Salivary EGF, which seems also regulated by dietary inorganic iodine, also plays an important physiological role in the maintenance of oro-oesophageal and gastric tissue integrity. The biological effects of salivary EGF include healing of oral and gastroesophageal ulcers, inhibition of gastric acid secretion, stimulation of DNA synthesis as well as mucosal protection from intraluminal injurious factors such as gastric acid, bile acids, pepsin, and trypsin and to physical, chemical and bacterial agents. EGF acts by binding with high affinity to epidermal growth factor receptor (EGFR) on the cell surface and stimulating the intrinsic protein-tyrosine kinase activity of the receptor. The tyrosine kinase activity, in turn, initiates a signal transduction cascade that results in a variety of biochemical changes within the cell - a rise in intracellular calcium levels, increased glycolysis and protein synthesis, and increases in the expression of certain genes including the gene for EGFR - that ultimately lead to DNA synthesis and cell proliferation. Stimulation of Epidermal Growth Factor Receptors (EGFR), found on the cell membrane, may result in tumour growth and proliferation, inhibition of apoptosis, stimulation of angiogenesis and the promotion of tissue invasion and metastasis. The receptor is overexpressed in a variety of cancers, including 95% of advanced tumours of the pancreas, up to 90% of tumours in the kidney and the head and the neck, up to 80% of some lung cancers, and up to 70% and 75% of tumours of the ovaries and colon respectively. Ligands such as epidermal growth factor (EGF) and transforming growth factor alpha (TGF alpha) bind to EGFR and turn on a sequence of signalling pathways important to pro-tumour mechanisms. Compounds which interfere with the sequence of pro-tumour events that follow the stimulation of EGFR are thought to be useful as anti-cancer agents. These include monoclonal antibodies directed at this receptor and small molecules targeted at a specific tyrosine kinase, the enzyme responsible for EGFR phosphorylation and downstream signaling. Antineoplastic; signal transduction inhibitor. Treatment of advanced non-small cell lung cancer and a range of other major human solid tumor types. Given by mouth.

SYNONYMS
C22-H24-Cl-F-N4-O3, "4-quinazolinamine, N-(3-chloro-4-fluorophenyl)-7-methoxy-", "4-quinazolinamine, N-(3-chloro-4-fluorophenyl)-7-methoxy-", 6-[3-(4-morpholinyl)propoxy]-, 6-[3-(4-morpholinyl)propoxy]-, IRESSA, "ZD-1839 Pure", "ZD1830 free pure base", "tyrosine kinase inhibitor EGFR NSCLC", antineoplastic
EMERGENCY OVERVIEW

RISK
Harmful if swallowed.
Limited evidence of a carcinogenic effect.
Possible risk of impaired fertility.
Harmful: danger of serious damage to health by prolonged exposure through inhalation and if swallowed.
Irritating to eyes and skin.
Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED
- Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.
- The killing action of antineoplastic drugs used for cancer chemotherapy is not selective for cancerous cells alone but affect all dividing cells. Acute side-effects include loss of appetite, nausea and vomiting, allergic reaction (skin rash, itch, redness, low blood pressure, unwellness and anaphylactic shock) and local irritation. Gout and renal failure can occur.
- The most common side-effects, associated with the clinical use of Epidermal Growth Factor Receptor (EGFR) inhibitors of tyrosine kinase, in the treatment of non-small cell lung cancers (NSCLC), include diarrhoea, skin rash, nausea, vomiting, headache, dizziness, asthenia, fatigue and loss of appetite. Less common side-effects may include dryness of the mouth, skin dryness, exfoliative dermatitis, pruritus, and itchiness. Rare side-effects may include dryness of the eyes, eye pain and liver injury.

SKIN
- This material can cause eye irritation and damage in some persons.
- Accidental skin contact with this material may accentuate any pre-existing dermatitis condition.
- Skin contact is not thought to produce harmful health effects (as classified using animal models). Systemic harm, however, has been identified following exposure of animals by at least one other route and the material may still produce health damage following entry through wounds, lesions or abrasions. Good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED
- The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified using animal models). Nevertheless, adverse effects have been produced following exposure of animals by at least one other route and the material may still produce health damage following entry through wounds, lesions or abrasions. Good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

CHRONIC HEALTH EFFECTS
- Harmful: danger of serious damage to health by prolonged exposure through inhalation and if swallowed.
- Harmful: danger of serious damage to health by prolonged exposure through inhalation and if swallowed.
- This material can cause serious damage if it is exposed to it for long periods. It can be assumed that it contains a substance which can produce severe defects. This has been demonstrated via both short- and long-term experimentation.

Repeated exposure causes adverse effects on female fertility. The no-effect level was 10 mg/kg/day. Studies on animals have shown that repeated oral doses produce adverse effects on many tissues and organs, including the eyes. A study in animals has shown that repeated exposure causes adverse effects on female fertility. The no-effect level was 10 mg/kg/day. Studies on animals have shown that repeated oral doses produce adverse effects on many tissues and organs, including the eyes.
also shown that low doses produce embryofetal toxic effects in the presence of maternal toxicity (including mortality). The no-effect level was 1 mg/kg/day. This effect is unlikely to occur in humans provided occupational exposure limits are not exceeded.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability:</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Toxicity:</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Body Contact:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Reactivity:</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chronic:</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

NAME

gefitinib

CAS RN

| 184475-35-2 |

%

>98

Section 4 - FIRST AID MEASURES

SWALLOWED

- **IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.**
- Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:
 - For advice, contact a Poisons Information Center or a doctor.
 - Urgent hospital treatment is likely to be needed.
 - If conscious, give water to drink.
 - INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
 - **NOTE:** Wear a protective glove when inducing vomiting by mechanical means.

EYE

- **If this product comes in contact with the eyes:**
 - Immediately hold eyelids apart and flush the eye continuously with running water.
 - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
 - Continue flushing until advised to stop by the Poisons Information Center or a doctor, or for at least 15 minutes.
 - Transport to hospital or doctor without delay.
 - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- **If skin contact occurs:**
 - Immediately remove all contaminated clothing, including footwear
 - Flush skin and hair with running water (and soap if available).
 - Seek medical attention in event of irritation.

INHALED

- **If dust is inhaled, remove from contaminated area.**
- Encourage patient to blow nose to ensure clear passage of breathing.
- If irritation or discomfort persists seek medical attention.

NOTES TO PHYSICIAN

- **Treat symptomatically.**
 - For employees potentially exposed to antineoplastic and/or cytotoxic agents on a regular basis, a preplacement physical examination and history (noting risk factors) is recommended. Periodic follow-up examinations should also be undertaken and should be overseen by a physician familiar with the toxic effects of the substance and full details of the nature of work undertaken by the employee. Following administration of antineoplastics, control of nausea and vomiting may be attempted by giving phenothiazines such as perphenazine, prochlorperazine, promethazine or thiethylperazine before antineoplastic agents are administered. In bone-marrow depression, transfusion of blood or platelets reduces the risk of life-threatening hemorrhage. Granulocyte transfusions and injection of antibiotics may be necessary to combat infection in the neutropenic patient. Hyperuricemia is avoided by the addition of allopurinol to treatment schedules and measures such as alkalization of the urine and hydration may be adopted. MARTINDALE: The Extra Pharmacopoeia, 28th Edition.

Section 5 - FIRE FIGHTING MEASURES

Vapour Pressure (mmHg):

Negligible
<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not available.</td>
</tr>
<tr>
<td>Specific Gravity (water=1)</td>
<td>Not available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not available</td>
</tr>
</tbody>
</table>

EXTINGUISHING MEDIA

- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog - Large fires only.

FIRE FIGHTING

- Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- Do not approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), hydrogen chloride, phosgene, hydrogen fluoride, nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

FIRE INCOMPATIBILITY

- Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

- Glasses:
- Gloves:
- Respirator:
- Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Clean up waste regularly and abnormal spills immediately.
- Avoid breathing dust and contact with skin and eyes.
- Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust.
- Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- Dampen with water to prevent dusting before sweeping.
- Place in suitable containers for disposal.

Environmental hazard - contain spillage.

It is recommended that areas handling final finished product have cytotoxic spill kits available.

Spill kits should include:
- impermeable body covering,
- shoe covers,
- latex and utility latex gloves,
- goggles,
- approved HEPA respirator,
- disposable dust pan and scoop,
- absorbent towels,
- spill control pillows,
- disposable sponges,
- sharps container,
- disposable garbage bag and
- hazardous waste label

To avoid accidental exposure due to waste handling of cytotoxics:
- Place waste residue in a segregated sealed plastic container.
- Used syringes, needles and sharps should not be crushed, clipped, recapped, but placed directly into an approved sharps container.
- Dispose of any cleanup materials and waste residue according to all applicable laws and regulations e.g. secure chemical landfill disposal.

All personnel likely to involved in a antineoplastic (cytotoxic) spill must receive practical training in:
- the correct procedures for handling cytotoxic drugs or waste in order to prevent and minimize the risk of spills
- the location of the skill kit in the area
- the arrangements for medical treatment of any affected personnel
- the procedure for containment of the spill, and decontamination of personnel and the environment, including the different procedures for major and minor spills
- the procedure for waste disposal according to the nature and extent of the spill

MAJOR SPILLS
- Environmental hazard - contain spillage. Moderate hazard.
- CAUTION: Advise personnel in area.
- Alert Emergency Responders and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL

From IERG (Canada/Australia)

Isolation Distance
- Downwind Protection Distance 10 meters

FOOTNOTES
1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.
2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.
3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.
4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder.
6 IERG information is derived from CANUTEC - Transport Canada.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)
AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.
AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.
AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING
- The National Institute of Health (USA) recommends that the preparation of injectable antineoplastic drugs should be performed in a Class II laminar flow biological safety cabinet and that personnel preparing drugs of this class should wear appropriate personal protective gear. Emphasise controls on containment.
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
• Keep containers securely sealed when not in use.
• Avoid physical damage to containers.
• Always wash hands with soap and water after handling.
• Work clothes should be laundered separately.
• Launder contaminated clothing before re-use.
• Use good occupational work practice.
• Observe manufacturer’s storing and handling recommendations.
• Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

RECOMMENDED STORAGE METHODS
■ Glass container.
■ Polyethylene or polypropylene container.
■ Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS
■ Antineoplastics (cytotoxics):
 • should be clearly identifiable to all personnel involved in their handling
 • should be stored in impervious break-resistant containers
 • should be stored in separate, clearly marked storage areas to minimize the risk of breakage, and to limit contamination in the event of leakage.
 Spill kits should be available in storage areas.
 Observe manufacturer’s storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS
The following materials had no OELs on our records
• gefitinib: CAS:184475-35-2

MATERIAL DATA
GEFITINIB:
■ Airborne particulate or vapor must be kept to levels as low as is practicably achievable given access to modern engineering controls and monitoring hardware. Biologically active compounds may produce idiosyncratic effects which are entirely unpredictable on the basis of literature searches and prior clinical experience (both recent and past).
CEL TWA: 0.1 mg/m3 (AstraZeneca)

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE
■ Chemical protective goggles with full seal
■ Shielded mask (gas-type)
■ Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]

HANDS/FEET
■ Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
 • frequency and duration of contact,
 • chemical resistance of glove material,
 • glove thickness and
 • dexterity
Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
- Rubber gloves (nitrile or low-protein, powder-free latex). Employees allergic to latex gloves should use nitrile gloves in preference.
- Double gloving should be considered.
- PVC gloves.
- Protective shoe covers.
- Head covering.

OTHER
- For quantities up to 500 grams a laboratory coat may be suitable.
- For quantities up to 1 kilogram a disposable laboratory coat or coverall of low permeability is recommended. Coveralls should be buttoned at collar and cuffs.
- For quantities over 1 kilogram and manufacturing operations, wear disposable coverall of low permeability and disposable shoe covers.
- For manufacturing operations, air-supplied full body suits may be required for the provision of advanced respiratory protection.
- Eye wash unit.
- Ensure there is ready access to an emergency shower.
- For Emergencies: Vinyl suit

When handling antineoplastic materials, it is recommended that a disposal work-uniform (such as Tyvek or closed front surgical-type gown with knit cuffs) is worn.

RESPIRATOR

<table>
<thead>
<tr>
<th>Protection Factor</th>
<th>Half-Face Respirator</th>
<th>Full-Face Respirator</th>
<th>Powered Air Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 x PEL</td>
<td>P1</td>
<td>-</td>
<td>PAPR-P1</td>
</tr>
<tr>
<td>50 x PEL</td>
<td>Air-line*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100 x PEL</td>
<td>-</td>
<td>P3</td>
<td>-</td>
</tr>
<tr>
<td>100+ x PEL</td>
<td>-</td>
<td>Air-line*</td>
<td>-</td>
</tr>
<tr>
<td>- P1</td>
<td>Air-line**</td>
<td>-</td>
<td>PAPR-P2</td>
</tr>
<tr>
<td>- P2</td>
<td>-</td>
<td>-</td>
<td>PAPR-P3</td>
</tr>
</tbody>
</table>

* - Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:
- Class 1 low to medium absorption capacity filters.
- Class 2 medium absorption capacity filters.
- Class 3 high absorption capacity filters.
- PAPR Powered Air Purifying Respirator (positive pressure) cartridge.
- Type A for use against certain organic gases and vapors.
- Type AX for use against low boiling point organic compounds (less than 65°C).
- Type B for use against certain inorganic gases and other acid gases and vapors.
- Type E for use against sulfur dioxide and other acid gases and vapors.
- Type K for use against ammonia and organic ammonia derivatives.
- Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.
- Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.
- Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.
- The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS
- Enclosed local exhaust ventilation is required at points of dust, fume or vapor generation.
- HEPA terminated local exhaust ventilation should be considered at point of generation of dust, fumes or vapors.
- Barrier protection or laminar flow cabinets should be considered for laboratory scale handling.

The need for respiratory protection should also be assessed where incidental or accidental exposure is anticipated: Dependent on levels of contamination, PAPR, full face air purifying devices with P2 or P3 filters or air supplied respirators should be evaluated.

Fume-hoods and other open-face containment devices are acceptable when face velocities of at least 1 m/s (200 feet/minute) are achieved. Partitions, barriers, and other partial containment technologies are required to prevent migration of the material to uncontrolled areas. For non-routine emergencies maximum local and general exhaust are necessary. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

<table>
<thead>
<tr>
<th>Type of Contaminant</th>
<th>Air Speed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>solvent, vapors, etc. evaporating from tank (in still air)</td>
<td>0.25-0.5 m/s (50-100 f/min.)</td>
</tr>
<tr>
<td>aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers (released at low velocity into zone of active generation)</td>
<td>0.5-1 m/s (100-200 f/min.)</td>
</tr>
<tr>
<td>direct spray, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)</td>
<td>1-2.5 m/s (200-500 f/min.)</td>
</tr>
</tbody>
</table>

Within each range the appropriate value depends on:
Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2.5 m/s (200-500 f/min.) for extraction of gases discharged 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid. Does not mix with water.

<table>
<thead>
<tr>
<th>State</th>
<th>Divided solid</th>
<th>Molecular Weight</th>
<th>446.91</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting Range (°F)</td>
<td>374- 377.6</td>
<td>Viscosity</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Boiling Range (°F)</td>
<td>Not available</td>
<td>Solubility in water (g/L)</td>
<td>Partly miscible</td>
</tr>
<tr>
<td>Flash Point (°F)</td>
<td>Not available</td>
<td>pH (1% solution)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Decomposition Temp (°F)</td>
<td>Not available</td>
<td>pH (as supplied)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Autoignition Temp (°F)</td>
<td>932- 1022</td>
<td>Vapour Pressure (mmHG)</td>
<td>Negligible</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not available</td>
<td>Specific Gravity (water=1)</td>
<td>Not available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not available</td>
<td>Relative Vapor Density (air=1)</td>
<td>>1</td>
</tr>
<tr>
<td>Volatile Component (%vol)</td>
<td>Negligible</td>
<td>Evaporation Rate</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

APPEARANCE

Cream powder; does not mix well with water. Partition Coefficient: 4.1 Dissociation Constants; 5.4; 7.24

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

- Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

gefitinib

TOXICITY AND IRRITATION

- unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

<table>
<thead>
<tr>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral (rat) LD50: 2000 mg/kg</td>
<td>Eye: SEVERE *</td>
</tr>
<tr>
<td></td>
<td>Skin: Irritant *</td>
</tr>
</tbody>
</table>

Neither a moderate or strong skin sensitizer in animal tests *

* AstraZeneca

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

GEFITINIB:

- Toxic to aquatic organisms.
- Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

- May cause long-term adverse effects in the aquatic environment.
- DO NOT discharge into sewer or waterways.

Environmental Fate:

- The substance has low mobility in soil.
- The substance has a high potential to bioaccumulate.
Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions
All waste must be handled in accordance with local, state and federal regulations.
Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.
A Hierarchy of Controls seems to be common - the user should investigate:
- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use.

- Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.
- DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.
- Antineoplastic (cytotoxic) wastes must be packed directly, ready for incineration, into color-coded, secure, labelled, leak-proof containers sufficiently robust to withstand handling without breaking, bursting or leaking.
- Containers of special design are available for particular needs (such as disposal of sharps) and should be used.
- Once filled and closed, such containers must never be re-opened.
- Immediate containers must bear a nationally accepted symbol or device depicting cytotoxic substances and be labelled with the words: CYTOTOXIC WASTE - INCINERATE in a style of lettering approved by the national/state authority.
- Where policies and procedures permit the merging of cytotoxic wastes with medical waste in an outer container used for medical waste, cytotoxic waste must first be placed in identifiable color-coded/labelled cytotoxic containers prior to merging.
- Management procedures must ensure that merged medical and cytotoxic waste is subjected to the incineration requirements appropriate for the total destruction of the cytotoxic waste.

WASTE STORAGE OF CYTOTOXIC WASTES
For the storage of cytotoxic waste, segregated or merged with medical waste, provide:
- special storage areas with adequate lighting.
- waste security and restriction of access to authorized persons.
- storage areas designed to facilitate easy routine cleaning and maintenance to hygienic standards, or post-spill decontamination.
- storage of cytotoxic waste in standard, identifying bins or other appropriate containers.

COLLECTION OF CYTOTOXIC WASTES
- Procedures for the collection of cytotoxic wastes, which are compatible with existing operational needs, and which protect workers, other people and the environment, must be developed.
- Waste must be removed from the site by contractors whose workers have been instructed in the protective methods to be used against the hazards involved, and who comply with the safe work practices established by internal and/or national/state policies. Contractors must instruct, train and direct their personnel in the safe and legal handling of cytotoxic wastes.
- Contractor's personnel should observe the operating procedures of the waste-generator.
- Transport of cytotoxic wastes, through the community, must comply with the appropriate national/state codes.

DESTRUCTION OF CYTOTOXIC WASTES
- Destruction of cytotoxic wastes should be carried out in multi-chambered incinerators, licenced for this purpose, operating at 1100 deg. C. or more, with a residence time of at least 1 second.
- Operators must be trained in handling procedures and hazards involved with handling the waste.
- Waste which arrives at the incinerator inappropriately packaged should NOT be returned to the waste generator. An authorized representative of the waste generator must attend the incinerator site to rectify the situation.

Section 14 - TRANSPORTATION INFORMATION

DOT:
- Symbols: G
- Hazard class or Division: 9
- Identification Numbers: UN3077
- PG: III
- Label Codes: 9
- Special provisions: 8, 146, 335, B54, IB8, IP3, N20, T1, TP33
- Packaging: Exceptions: 155
- Packaging: Non-bulk: 213
- Packaging: Exceptions: 155
- Quantity limitations: Passenger aircraft/rail: No limit
- Vessel stowage: Location: A
- Vessel stowage: Other: None

Hazardous materials descriptions and proper shipping names:
- Environmentally hazardous substance, solid, n.o.s

Air Transport IATA:
ICAO/IATA Class: 9 ICAO/IATA Subrisk: 阴
UN/ID Number: 3077 Packing Group: III
Special provisions: A97

Shipping Name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. *(CONTAINS GEFITINIB)
Maritime Transport IMDG:
UN Number: 3077 Packing Group: III
EMS Number: F-A,S-F Special provisions: 274 909 944
Limited Quantities: 5 kg
Shipping Name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.(contains gefitinib)

Section 15 - REGULATORY INFORMATION

No data for gefitinib (CAS: , 184475-35-2)

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE
■ Cumulative effects may result following exposure*.
■ Eye contact may produce serious damage*.
* (limited evidence).

Germany Hazard classification and labelling of medicines with antineoplastic effects (ATC Code L01 and L02)

<table>
<thead>
<tr>
<th>INN</th>
<th>CAS</th>
<th>Danger</th>
<th>CMR effects</th>
<th>CMR effects</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cat 1&2</td>
<td></td>
<td>Cat 3</td>
<td></td>
</tr>
<tr>
<td>Gefitinib</td>
<td>184475-35-2</td>
<td>Xn, N</td>
<td>R 22 R 38 R 41</td>
<td>R 48/22 R</td>
<td>51/53</td>
</tr>
</tbody>
</table>

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Jul-4-2007
Print Date: Apr-21-2010