Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Ochratoxin B

STATEMENT OF HAZARDOUS NATURE

NFPA

SUPPLIER
Company: Santa Cruz Biotechnology, Inc.
Address:
2145 Delaware Ave
Santa Cruz, CA 95060
Telephone: 800.457.3801 or 831.457.3800
Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305
Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE
The ochratoxins constitute a group of closely linked derivatives of isocoumarine linked to L-phenylalanine and are classified according to biosynthetic origin as "pentaketides" within the group of polyketides. Naturally occurring mycotoxins (phytotoxins) produced by Aspergillus ochraceus, A. sulphureus, A. meleus, Penicillium viridicatum. In colder climates, ochratoxins are produced by Penicillium strains, whilst in tropical and subtropical regions, they are produced by Aspergillus. As these molds occur widely, the toxin has been found as a natural contaminant on corn, peanuts, storage grains, cottonseed and other decaying vegetation. Residues of ochratoxin have been detected in samples of animals slaughter immediately after consuming contaminated feed. It has been detected at levels of 10-920 ug/kg in sausage, ham and bacon samples. Residues of ochratoxin are not generally found in ruminants because ochratoxin is cleaved in the fore-stomachs by protozoan and bacterial enzymes to the non-toxic ochratoxin alpha. In some calves however, ochratoxin A has been found at low levels in the kidneys indicating that the calves are not yet functioning as ruminants.

SYNONYMS
C20-H19-N-O6, C20-H19-N-O6, N-((8-hydroxy-3-methyl-1-oxo-7-isochromanyl)carbonyl)-3-phenylalanine, N-((8-hydroxy-3-methyl-1-oxo-7-isochromanyl)carbonyl)-3-phenylalanine, "(R)-N-((3, 4-dihydro-8-hydroxy-3-methyl-1-oxo-1H-2-benzopyran-7-yl)carboxy)phenylalanine, "(R)-N-((3, 4-dihydro-8-hydroxy-3-methyl-1-oxo-1H-2-benzopyran-7-yl)carboxy)phenylalanine, "pentaketide/ polyketide/ mycotoxin/ phytotoxin"

Section 2 - HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW
RISK
Toxic if swallowed.
Limited evidence of a carcinogenic effect.
Possible risk of harm to the unborn child.
Irritating to eyes, respiratory system and skin.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED
- Toxic effects may result from the accidental ingestion of the material; animal experiments indicate that ingestion of less than 40 gram may be fatal or may produce serious damage to the health of the individual.
- When ochratoxin was administered orally to rats and guinea pigs, the female was more sensitive than the male. In rats the target organ is the kidney but necrosis of perportal cells in the liver has also been noted. Lesions observed in field cases of mycotoxic nephropathy have also been reproduced by feeding diets containing levels of ochratoxin A identical to those encountered in the naturally contaminated product. Changes in renal function where characterised by impairment of tubular function and a reduced ability to produce concentrated urine. When dogs and pigs were given high oral doses of ochratoxin A (5-10 mg/kg, levels rarely found in nature), pathological effects, mainly necrosis, were observed in the liver, intestine, spleen, lymphoid tissue, leukocytes and kidneys. Ochratoxin A is an inhibitor of tRNA synthetase and protein synthesis in various microorganisms as well as in rat hepatoma cells. The competitive inhibitor effect of ochratoxin A on tRNA synthetase and protein synthesis in rat hepatoma cells can be prevented by addition of phenylalanine in cell culture medium suggesting the possibility of preventative measures for ochratoxin-induced disease although in field situations phenylalanine and ochratoxin A fed to pigs in the ratio 4600:1 did not prevent the development of nephropathy. Ochratoxin A causes an inhibition of macrophage migration (and thus suppression of the immune response) which can be prevented by the simultaneous addition of phenylalanine. Natural killer cell activity is also inhibited by ochratoxin A and this appears to be caused by reduced production of basal interferon (ochratoxin B does not influence immune function).
- During in vitro studies on rat liver mitochondria it was observed that ochratoxin A inhibited the respiration of the whole mitochondrion by acting as a competitive inhibitor of transport carrier proteins located in the inner mitochondrial membrane. Citrinin (another nephrotoxic mycotoxin produced by species of Aspergillus and Penicillium genera) produces proteinuria, glucosuria and a reduction in urine osmolality in fashion similar to that produced by ochratoxin A. Interestingly these mycotoxins produce proximal tubular damage via different mechanisms. A single large dose of citrinin produces proximal tubular dysfunction and necrosis in rats, whilst repeated small doses of ochratoxin A are required to produce kidney damage. A single large dose of ochratoxin A produces severe diarrhoea and death without any apparent effect on the kidney. Thus citrinin (or a hepatic metabolite) may be activated by a toxic reactive metabolite within the kidney.
- Ochratoxin A in human blood is bound strongly to serum albumin.

EYE
- This material may cause eye irritation and damage in some persons.

SKIN
- This material may cause inflammation of the skin and is a contact irritant in some persons.
- The material may accentuate any pre-existing dermatitis condition.
- Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

inhaled
- The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.
- Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS
- There has been concern that this material can cause cancer or mutations, but there is not enough data to make an assessment.
- Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.
- Results in experiments suggest that this material may cause disorders in the development of the embryo or fetus, even when no signs of poisoning show in the mother.
- Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

The incidence of and mortality from urothelial urinary tract tumours have been correlated with geographical distribution of Balkan endemic nephropathy in Bulgaria and Yugoslavia. A relatively high frequency of contamination of cereals and bread with ochratoxin A has been reported in an area of Yugoslavia where Balkan endemic nephropathy is present. Balkan endemic nephropathy is a chronic disease that predominantly affects women and progresses slowly up to death. Autopsy shows that kidneys are notably reduced in size. The histological lesions are interstitial fibrosis, tubular degeneration and hyalization of glomeruli in the more superficial part of the cortex. One study revealed the presence of ochratoxin in the serum of significant number of the inhabitants of 2 villages (6.6% of 639 samples taken) from the area in which the disease occurred. A similar study conducted in Poland revealed similar results whilst a study conducted in the former Federal Republic of Germany showed 56.6% of serum samples contained ochratoxin A. Ochratoxin A produces severe diarrhoea and death without any apparent effect on the kidney. Thus citrinin (or a hepatic metabolite) may be activated by a toxic reactive metabolite within the kidney.

When administered by gavage, ochratoxin A substantially increased the incidence of uncommon cell carcinomas of the kidney in male and female rats and also increased the incidence and multiplicity of the mammary glands in female rats. When introduced into the diet, renal adenomas and carcinomas were observed in male mice and some hepatocellular carcinomas were observed in female mice. In another study dietary ochratoxin A induced hepatomas and renal cell tumours in male mice. Intraperitoneal injection of pregnant mice with ochratoxin A resulted in increased prenatal mortality, decreased foetal weight and various foetal malformations, including exencephaly and anomalies of the eyes, face, digits and tail. Subcutaneous administration to rats on gestation days 5-7 resulted in a high number of malformations including hydroencephaly, omphalocele and anophthalmia as well as a shift in the position of the oesophagus. In a further study low levels of dietary protein were shown to enhance the teratogenic potential of ochratoxin A in the rat. Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumocociosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS
HAZARD RATINGS

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability:</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Toxicity:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Body Contact:</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Reactivity:</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chronic:</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>CAS RN</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ochratoxin B</td>
<td>4825-86-9</td>
<td>>98</td>
</tr>
</tbody>
</table>

Section 4 - FIRST AID MEASURES

SWALLOWED

- Give a slurry of activated charcoal in water to drink. NEVER GIVE AN UNCONSCIOUS PATIENT WATER TO DRINK.
- At least 3 tablespoons in a glass of water should be given.
- Although induction of vomiting may be recommended (IN CONSCIOUS PERSONS ONLY), such a first aid measure is dissuaded because to the risk of aspiration of stomach contents. (i) It is better to take the patient to a doctor who can decide on the necessity and method of emptying the stomach. (ii) Special circumstances may however exist; these include non-availability of charcoal and the ready availability of the doctor.

NOTE: If vomiting is induced, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. NOTE: Wear protective gloves when inducing vomiting.

- REFER FOR MEDICAL ATTENTION WITHOUT DELAY.
- In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.
- If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist.
- If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS.

EYE

- If this product comes in contact with the eyes:
 - Immediately hold eyelids apart and flush the eye continuously with running water.
 - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
 - Continue flushing until advised to stop by the Poisons Information Center or a doctor, or for at least 15 minutes.

SKIN

- If skin contact occurs:
 - Immediately remove all contaminated clothing, including footwear.
 - Flush skin and hair with running water (and soap if available).
 - Seek medical attention in event of irritation.

INHALED

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

NOTES TO PHYSICIAN

- Treat symptomatically.
- for poisons (where specific treatment regime is absent):

BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- Monitor and treat, where necessary, for pulmonary edema.
- Monitor and treat, where necessary, for shock.
- Anticipate seizures.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.

ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use.
Monitor and treat, where necessary, for arrhythmias.
Start an IV D5W TKO. If signs of hypovolemia are present use lactated Ringers solution. Fluid overload might create complications.
Drug therapy should be considered for pulmonary edema.
Hypotension with signs of hypovolemia requires the cautious administration of fluids. Fluid overload might create complications.
Treat seizures with diazepam.
Proparacaine hydrochloride should be used to assist eye irrigation.

BRONSTEIN, A.C. and CURRANCE, P.L.
EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994.

Section 5 - FIRE FIGHTING MEASURES

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapour Pressure (mmHG):</td>
<td>Negligible</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not available</td>
</tr>
<tr>
<td>Specific Gravity (water=1)</td>
<td>Not available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not available</td>
</tr>
</tbody>
</table>

EXTINGUISHING MEDIA
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog - Large fires only.

FIRE FIGHTING
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Use fire fighting procedures suitable for surrounding area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS
- Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.
- Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.
- May emit poisonous fumes.

FIRE INCOMPATIBILITY
- Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION
- Glasses:
- Gloves:
- Respirator:
- Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS
- Clean up waste regularly and abnormal spills immediately.
- Avoid breathing dust and contact with skin and eyes.
- Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust.
- Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- Dampen with water to prevent dusting before sweeping.
- Place in suitable containers for disposal.

MAJOR SPILLS
- Clear area of personnel and move upwind.
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
• Prevent, by any means available, spillage from entering drains or water course.
• Stop leak if safe to do so.
• Contain spill with sand, earth or vermiculite.
• Collect recoverable product into labeled containers for recycling.
• Neutralize/decontaminate residue.
• Collect solid residues and seal in labeled drums for disposal.
• Wash area and prevent runoff into drains.
• After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
• If contamination of drains or waterways occurs, advise emergency services.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)
AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.
AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.
AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING
• Avoid all personal contact, including inhalation.
• Wear protective clothing when risk of exposure occurs.
• Use in a well-ventilated area.
• Prevent concentration in hollows and sumps.
• DO NOT enter confined spaces until atmosphere has been checked.
• DO NOT allow material to contact humans, exposed food or food utensils.
• Avoid contact with incompatible materials.
• When handling, DO NOT eat, drink or smoke.
• Keep containers securely sealed when not in use.
• Avoid physical damage to containers.
• Always wash hands with soap and water after handling.
• Work clothes should be laundered separately.
• Keep containers securely sealed.
• Avoid physical damage to containers.
• Check all containers are clearly labeled and free from leaks.

RECOMMENDED STORAGE METHODS
• Glass container.
• Lined metal can, Lined metal pail/drum
• Plastic pail
• Polyliner drum
• Packing as recommended by manufacturer.
• For low viscosity materials
• Drums and jerricans must be of the non-removable head type.
• Where a can is to be used as an inner package, the can must have a screwed enclosure.
• For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.):
• Removable head packaging;
• Cans with friction closures and
• low pressure tubes and cartridges may be used.
• - Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages *.
• - In addition, where inner packagings are glass and contain liquids of packing group I and II there must be sufficient inert absorbent to absorb any spillage *.
• - * unless the outer packaging is a close fitting molded plastic box and the substances are not incompatible with the plastic.

STORAGE REQUIREMENTS
• Store in original containers.
• Keep containers securely sealed.
• Store in a cool, dry, well-ventilated area.
• Store away from incompatible materials and foodstuff containers.
• Protect containers against physical damage and check regularly for leaks.
• Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS
Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

<table>
<thead>
<tr>
<th>Source</th>
<th>Material</th>
<th>TWA ppm</th>
<th>TWA mg/m³</th>
<th>STEL ppm</th>
<th>STEL mg/m³</th>
<th>Peak ppm</th>
<th>Peak mg/m³</th>
<th>TWA F/CC</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>US - Oregon Permissible Exposure Limits (Z3)</td>
<td>ochratoxin B (Inert or Nuisance Dust: (d) Total dust)</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>US OSHA Permissible Exposure Levels (PELs) - Table Z3</td>
<td>ochratoxin B (Inert or Nuisance Dust: (d) Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US OSHA Permissible Exposure Levels (PELs) - Table Z3</td>
<td>ochratoxin B (Inert or Nuisance Dust: (d) Total dust)</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Hawaii Air Contaminant Limits</td>
<td>ochratoxin B (Particulates not otherwise regulated - Total dust)</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Hawaii Air Contaminant Limits</td>
<td>ochratoxin B (Particulates not otherwise regulated - Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Oregon Permissible Exposure Limits (Z3)</td>
<td>ochratoxin B (Inert or Nuisance Dust: (d) Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants</td>
<td>ochratoxin B (Particulates not otherwise regulated Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants</td>
<td>ochratoxin B (Particulates not otherwise regulated (PNOR)(f)-Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Michigan Exposure Limits for Air Contaminants</td>
<td>ochratoxin B (Particulates not otherwise regulated, Respirable dust)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MATERIAL DATA

OCHRATOXIN B:
- Airborne particulate or vapor must be kept to levels as low as is practicably achievable given access to modern engineering controls and monitoring hardware. Biologically active compounds may produce idiosyncratic effects which are entirely unpredictable on the basis of literature searches and prior clinical experience (both recent and past).

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE
- For laboratory, larger scale or bulk handling or where regular exposure in an occupational setting occurs:
 - Chemical goggles
 - Face shield. Full face shield may be required for supplementary but never for primary protection of eyes
 - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59].

HANDS/FEET
- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
 - frequency and duration of contact,
 - chemical resistance of glove material,
 - glove thickness and
Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
Contaminated gloves should be replaced.
Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
Rubber gloves (nitrile or low-protein, powder-free latex). Employees allergic to latex gloves should use nitrile gloves in preference.
Double gloving should be considered.
PVC gloves.
Protective shoe covers.
Head covering.

OTHER
For quantities up to 500 grams a laboratory coat may be suitable.
For quantities up to 1 kilogram a disposable laboratory coat or coverall of low permeability is recommended. Coveralls should be buttoned at collar and cuffs.
For quantities over 1 kilogram and manufacturing operations, wear disposable coverall of low permeability and disposable shoe covers.
For manufacturing operations, air-supplied full body suits may be required for the provision of advanced respiratory protection.
Eye wash unit.
Ensure there is ready access to an emergency shower.
For Emergencies: Vinyl suit
Handle extremely poisonous natural toxins in closed systems such as glove bags or other enclosures, to avoid accidental contact. Workers should wear complete disposable clothing including shoe covers, gloves and mask with an independent air supply.
Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker’s exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory . These may be government mandated or vendor recommended.
Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
Use approved positive flow mask if significant quantities of dust becomes airborne.
Try to avoid creating dust conditions.

RESPIRATOR
Protective Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
10 x PEL | Air-line* | P1 | - | PAPR-P1
50 x PEL | Air-line** | P2 | PAPR-P2
100 x PEL | P3 | - | -
100+ x PEL | Air-line* | - | - | PAPR-P3

* - Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:
Class 1 low to medium absorption capacity filters.
Class 2 medium absorption capacity filters.
Class 3 high absorption capacity filters.
PAPR Powered Air Purifying Respirator (positive pressure) cartridge.
Type A for use against certain organic gases and vapors.
Type AX for use against low boiling point organic compounds (less than 65ºC).
Type B for use against certain inorganic gases and other acid gases and vapors.
Type E for use against sulfur dioxide and other acid gases and vapors.
Type K for use against ammonia and organic ammonia derivatives
Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.
Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.
Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.
The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

ENGINEERING CONTROLS
For potent pharmacological agents:
Powders
To prevent contamination and overexposure, no open handling of powder should be allowed.
Powder handling operations are to be done in a powders weighing hood, a glove box, or other equivalent ventilated containment system.
In situations where these ventilated containment hoods have not been installed, a non-ventilated enclosed containment hood should be used.
- Pending changes resulting from additional air monitoring data, up to 300 mg can be handled outside of an enclosure provided that no grinding, crushing or other dust-generating process occurs.
- An air-purifying respirator should be worn by all personnel in the immediate area in cases where non-ventilated containment is used, where significant amounts of material (e.g., more than 2 grams) are used, or where the material may become airborne (as through grinding, etc.).
- Powder should be put into solution or a closed or covered container after handling.
- If using a ventilated enclosure that has not been validated, wear a half-mask respirator equipped with HEPA cartridges until the enclosure is validated for use.

Solutions Handling:
- Solutions can be handled outside a containment system or without local exhaust ventilation during procedures with no potential for aerosolisation. If the procedures have a potential for aerosolisation, an air-purifying respirator is to be worn by all personnel in the immediate area.
- Solutions used for procedures where aerosolisation may occur (e.g., vortexing, pumping) are to be handled within a containment system or with local exhaust ventilation.
- In situations where this is not feasible (may include animal dosing), an air-purifying respirator is to be worn by all personnel in the immediate area. If using a ventilated enclosure that has not been validated, wear a half-mask respirator equipped with HEPA cartridges until the enclosure is validated for use.
- Ensure gloves are protective against solvents in use.

Air should be supplied by an independent system. Enclosed local exhaust ventilation is required at points of dust, fume or vapor generation.

HEPA terminated local exhaust ventilation should be considered at point of generation of dust, fumes or vapors. Barrier protection or laminar flow cabinets should be considered for laboratory scale handling.

The need for respiratory protection should also be assessed where incidental or accidental exposure is anticipated: Dependent on levels of contamination, PAPR, full face air purifying devices with P2 or P3 filters or air supplied respirators should be evaluated.

Fume-hoods and other open-face containment devices are acceptable when face velocities of at least 1 m/s (200 feet/minute) are achieved. Partitions, barriers, and other partial containment technologies are required to prevent migration of the material to uncontrolled areas. For non-routine emergencies maximum local and general exhaust are necessary. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

The Type of Contaminant:
- solvent, vapors, etc. evaporating from tank (in still air)
- aerosols, fumes from pouring operations, intermittent container filling, low speed conveyor transfers (released at low velocity into zone of active generation)
- direct spray, drum filling, conveyor loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)

Within each range the appropriate value depends on:

<table>
<thead>
<tr>
<th>Air Speed:</th>
<th>Lower end of the range</th>
<th>Upper end of the range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Room air currents minimal or favourable to capture</td>
<td>0.25-0.5 m/s (50-100 f/min.)</td>
<td>0.5-1 m/s (100-200 f/min.)</td>
</tr>
<tr>
<td>1: Disturbing room air currents</td>
<td>1-2.5 m/s (200-500 f/min.)</td>
<td></td>
</tr>
<tr>
<td>2: Contaminants of low toxicity or of nuisance value only.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2: Contaminants of high toxicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3: Intermittent, low production.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3: High production, heavy use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4: Large hood or large air mass in motion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4: Small hood-local control only</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2.5 m/s (200-500 f/min.) for extraction of gases discharged 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

<table>
<thead>
<tr>
<th>State</th>
<th>Molecular Weight</th>
<th>Viscosity</th>
<th>Specific Gravity</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid</td>
<td>Divided solid</td>
<td>369.40</td>
<td>Not Available</td>
<td>Negligible</td>
</tr>
<tr>
<td>Melting Range (°F)</td>
<td>429.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiling Range (°F)</td>
<td>Not available</td>
<td>Solubility in water (g/L)</td>
<td>Immiscible</td>
<td></td>
</tr>
<tr>
<td>Flash Point (°F)</td>
<td>Not available</td>
<td>pH (1% solution)</td>
<td>Not applicable</td>
<td></td>
</tr>
<tr>
<td>Decomposition Temp (°F)</td>
<td>Not Available</td>
<td>pH (as supplied)</td>
<td>Not applicable</td>
<td></td>
</tr>
<tr>
<td>Autoignition Temp (°F)</td>
<td>Not available</td>
<td>Vapour Pressure (mmHG)</td>
<td>Negligible</td>
<td></td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not available</td>
<td>Specific Gravity (water=1)</td>
<td>Not available</td>
<td></td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not available</td>
<td>Relative Vapor Density (air=1)</td>
<td>Not applicable</td>
<td></td>
</tr>
<tr>
<td>Volatile Component (%vol)</td>
<td>Negligible</td>
<td>Evaporation Rate</td>
<td>Not applicable</td>
<td></td>
</tr>
</tbody>
</table>

APPEARANCE

White powder; does not mix with water. Exhibits blue fluorescence in methanol.

Section 10 - CHEMICAL STABILITY

Solutions Handling:
- Solutions can be handled outside a containment system or without local exhaust ventilation during procedures with no potential for aerosolisation. If the procedures have a potential for aerosolisation, an air-purifying respirator is to be worn by all personnel in the immediate area.
- Solutions used for procedures where aerosolisation may occur (e.g., vortexing, pumping) are to be handled within a containment system or with local exhaust ventilation.
- In situations where this is not feasible (may include animal dosing), an air-purifying respirator is to be worn by all personnel in the immediate area. If using a ventilated enclosure that has not been validated, wear a half-mask respirator equipped with HEPA cartridges until the enclosure is validated for use.
- Ensure gloves are protective against solvents in use.

Air should be supplied by an independent system. Enclosed local exhaust ventilation is required at points of dust, fume or vapor generation.

HEPA terminated local exhaust ventilation should be considered at point of generation of dust, fumes or vapors. Barrier protection or laminar flow cabinets should be considered for laboratory scale handling.

The need for respiratory protection should also be assessed where incidental or accidental exposure is anticipated: Dependent on levels of contamination, PAPR, full face air purifying devices with P2 or P3 filters or air supplied respirators should be evaluated.

Fume-hoods and other open-face containment devices are acceptable when face velocities of at least 1 m/s (200 feet/minute) are achieved. Partitions, barriers, and other partial containment technologies are required to prevent migration of the material to uncontrolled areas. For non-routine emergencies maximum local and general exhaust are necessary. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

The Type of Contaminant:
- solvent, vapors, etc. evaporating from tank (in still air)
- aerosols, fumes from pouring operations, intermittent container filling, low speed conveyor transfers (released at low velocity into zone of active generation)
- direct spray, drum filling, conveyor loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)

Within each range the appropriate value depends on:

<table>
<thead>
<tr>
<th>Air Speed:</th>
<th>Lower end of the range</th>
<th>Upper end of the range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Room air currents minimal or favourable to capture</td>
<td>0.25-0.5 m/s (50-100 f/min.)</td>
<td>0.5-1 m/s (100-200 f/min.)</td>
</tr>
<tr>
<td>1: Disturbing room air currents</td>
<td>1-2.5 m/s (200-500 f/min.)</td>
<td></td>
</tr>
<tr>
<td>2: Contaminants of low toxicity or of nuisance value only.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2: Contaminants of high toxicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3: Intermittent, low production.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3: High production, heavy use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4: Large hood or large air mass in motion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4: Small hood-local control only</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2.5 m/s (200-500 f/min.) for extraction of gases discharged 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.
CONDITIONS CONTRIBUTING TO INSTABILITY
- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY
- Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

ochratoxin B

TOXICITY AND IRRITATION
- unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

<table>
<thead>
<tr>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral (chicken) LD50: 54 mg/kg</td>
<td>Nil Reported</td>
</tr>
</tbody>
</table>

- Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergic condition known as reactive Airways Dysfunction Syndrome (RADS) which can occur following exposure to high levels of highly irritant compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

OCHRATOXIN B:
- For ochratoxin:
 Generally, the degradation of ochratoxin was faster in planted soil than in unplanted soil, probably due to higher microbial activity. Due to the fast degradation of ochratoxin in surface soil leaching as soluble substances appears to be limited.
- DO NOT discharge into sewer or waterways.

Ecotoxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
<th>Bioaccumulation</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>ochratoxin B</td>
<td>HIGH</td>
<td>LOW</td>
<td>MED</td>
<td></td>
</tr>
</tbody>
</table>

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions
All waste must be handled in accordance with local, state and federal regulations.
- Puncture containers to prevent re-use and bury at an authorized landfill.
Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.
A Hierarchy of Controls seems to be common - the user should investigate:
- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)
This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.
DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.
- Recycle wherever possible. Special hazard may exist - specialist advice may be required.
- Consult manufacturer for recycling options.
- Consult Waste Management Authority for disposal.
- Bury or incinerate residue at an approved site.
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.
- Puncture containers to prevent re-use and bury at an authorized landfill.

Section 14 - TRANSPORTATION INFORMATION
DOT:
Symbols: None
Hazard class or Division: 6.1
Identification Numbers: UN3462
PG: III
Label Codes: 6.1
Special provisions: 141, IB8, IP3, T1 TP33
Packaging: Exceptions: 153
Packaging: Non-bulk: 213
Special provisions: 141, IB8, IP3, T1 TP33
Packaging: Exceptions: 153
Quantity limitations: Passenger aircraft/rail: 100 kg
Quantity Limitations: Cargo aircraft only: 200 kg
Vessel stowage: Location: A
Vessel stowage: Other: None

Hazardous materials descriptions and proper shipping names:
Toxins, extracted from living sources, solid, n.o.s.

Air Transport IATA:
ICAO/IATA Class: 6.1
ICAO/IATA Subrisk: None
UN/ID Number: 3462
Packing Group: III
Special provisions: A3

Maritime Transport IMDG:
IMDG Class: 6.1
IMDG Subrisk: None
UN Number: 3462
Packing Group: III
EMS Number: F-A,S-A
Special provisions: 210 223 274 944
Limited Quantities: 5 kg
Shipping Name: TOXINS, EXTRACTED FROM LIVING SOURCES, SOLID, N.O.S. *(CONTAINS OCHRATOXIN B)

Section 15 - REGULATORY INFORMATION

ochratoxin B (CAS: 4825-86-9) is found on the following regulatory lists:
US - Hawaii Air Contaminant Limits,*US - Oregon Permissible Exposure Limits (Z3)*,*US OSHA Permissible Exposure Levels (PELs) - Table Z3*

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE
■ Inhalation and/or skin contact may produce health damage*.
■ Cumulative effects may result following exposure*.
* (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Feb-6-2009
Print Date: Apr-21-2010