DHEA

Company: Santa Cruz Biotechnology, Inc. Address: 2145 Delaware Ave Santa Cruz, CA 95060 Telephone: 800.457.3801 or 831.457.3800 Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305 Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

Steroid. Naturally occuring but relatively weak androgen. Used in the assessment of placental function. Regeant

SYNONYMS

C19-H28-O2, androstenolone, "androst-5-en-17-one, 3-hydroxy-, (3beta)-", "androst-5-en-17-one, 3-hydroxy-, (3beta)-", 17-chetovis, 17-chetovis, trans-dehydroandosterone, dehydroepiandosterone, 5-dehydroepiandosterone, "5, 6-dehydroisoandosterone", "5, 6-dehydroisoandosterone, "3-beta-hydroxy-5-androsterone, "3-beta-hydroxy-5-androsterone, "3-beta-hydroxy-5-en-17-one, prasterone, Astenile, Deandros, Diandron, Diandrone, Psicosterone, "androgen/ steroid"

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

RISK

Irritating to eyes, respiratory system and skin. Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

Accidental ingestion of the material may be damaging to the health of the individual.

• Androgens can cause increased bone mass, blood concentrations of nitrogen, sodium, potassium, calcium and phosphates, water retention and swelling, and blood vessel growth in the skin. They may cause premature closure of growth plates in early puberty causing reduced height. Obstructive jaundice and abnormal liver function may result. Allergic reactions which affect the skin ar also present. Large doses can permanently reduce the production of sperm in males. In women, androgens affect the pituitary gland and inhibit menstruation and the production of female sex hormones. Prolonged administration of large doses can cause masculinization with hair growth, deep voice, atrophy of breast and endometrial tissue, acne, blackheads, and an enlarged clitoris. Sexual desire is increased, but milk production is reduced.

EYE

This material can cause eye irritation and damage in some persons.

SKIN

- This material can cause inflammation of the skin oncontact in some persons.
- The material may accentuate any pre-existing dermatitis condition.

Skin contact is not thought to have harmful health effects, however the material may still produce health damage following entry through wounds, lesions or abrasions.

Open cuts, abraded or irritated skin should not be exposed to this material.

• Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

• The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.

Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS

Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.

There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.

High doses of androgens over prolonged periods may produce liver tumors and hasten growth of cancer of the prostate. In pregnant women, androgens may cause the development of male secondary sex characteristics of the female fetus. Steroids can cause cancer and birth defects.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

Section 4 - FIRST AID MEASURES

SWALLOWED

- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Seek medical advice.
- EYE
- If this product comes in contact with the eyes:
- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- · If pain persists or recurs seek medical attention.
- · Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin contact occurs:
- Immediately remove all contaminated clothing, including footwear
- Flush skin and hair with running water (and soap if available).

· Seek medical attention in event of irritation.

INHALED

- •
- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.

NOTES TO PHYSICIAN

Treat symptomatically.

TREATMENT for androgen-anabolic steroid intoxication:

- For acute massive ingestions of androgenic-anabolic steroids, decontamination of the gastrointestinal tract with oral administration of activated charcoal may reduce absorption if employed within 1 or 2 hours of ingestion.
- Activated charcoal is used empirically as a general adsorbent, because there is no evidence to support or refute its efficacy.
- Because there appears to be minimal risk from ingesting pharmacological doses of androgen-anabolic steroids, gastrointestinal decontamination should not be indicated in these cases.
- For intramuscular injections of androgenic-anabolic steroids, cleansing and examination of the injection site would be advisable.
- Complications associated with androgenic-anabolic steroid use may require symptomatic treatment, such as lorazepam, diazepam, or haloperidol for excessively aggressive and combative patients.
- There are no specific antagonists for acute or chronic exposure to androgen-anabolic steroids. Discontinuance of further use should be emphasised.
- Management of a withdrawal syndrome associated with these steroids have been described but the risks and benefits of such an approach have not been reported.

CLINICAL TOXICOLOGY: Ford, Delaney, Ling and Erickson: 2001 Publisher: W.B. Saunders Company.

Section 5 - FIRE FIGHTING MEASURES Vapour Pressure (mmHG): Negligible Upper Explosive Limit (%): Not available. Specific Gravity (water=1): Not available Lower Explosive Limit (%): Not available EXTINGUISHING MEDIA Vertice

- Foam
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

FIRE FIGHTING

- .
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- · DO NOT approach containers suspected to be hot.
- · Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- · Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- •
- Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive
 mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the
 fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- · Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), other pyrolysis products typical of burning organic material.

FIRE INCOMPATIBILITY

• Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses: Chemical goggles. Gloves: Respirator: Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Environmental hazard contain spillage.
- Clean up waste regularly and abnormal spills immediately.
- Avoid breathing dust and contact with skin and eyes.
- Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust.
- Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- Dampen with water to prevent dusting before sweeping.
- Place in suitable containers for disposal.

MAJOR SPILLS

Environmental hazard - contain spillage.

- Moderate hazard.
- CAUTION: Advise personnel in area.
- · Alert Emergency Responders and tell them location and nature of hazard.
- · Control personal contact by wearing protective clothing.
- · Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- · ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL

PROTECTIVE ACTION ZONE

FOOTNOTES

1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance. 2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind

2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.

3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material. 4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages

4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder.

5 Guide 171 is taken from the US DOT emergency response guide book 6 IERG information is derived from CANUTEC - Transport Canada.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure. AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape. AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

• Avoid all personal contact, including inhalation.

- · Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- · Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- Do NOT cut, drill, grind or weld such containers
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

- Glass container.
- Polyethylene or polypropylene container.
- · Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

X: Must not be stored together

O: May be stored together with specific preventions

+: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m³	STEL ppm	STEL mg/m³	Peak ppm	Peak mg/m³	TWA F/CC	Notes
US - Oregon Permissible Exposure Limits (Z3)	dehydroisoandosterone (Inert or Nuisance Dust: (d) Total dust)		10						*
US OSHA Permissible Exposure Levels (PELs) - Table Z3	dehydroisoandosterone (Inert or Nuisance Dust: (d) Respirable fraction)		5						
US OSHA Permissible Exposure Levels (PELs) - Table Z3	dehydroisoandosterone (Inert or Nuisance Dust: (d) Total dust)		15						
US - Hawaii Air Contaminant Limits	dehydroisoandosterone (Particulates not other wise regulated - Total dust)		10						
US - Hawaii Air Contaminant Limits	dehydroisoandosterone (Particulates not other wise regulated - Respirable fraction)		5						
US - Oregon Permissible Exposure Limits (Z3)	dehydroisoandosterone (Inert or Nuisance Dust: (d) Respirable fraction)		5						*
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	dehydroisoandosterone (Particulates not otherwise regulated Respirable fraction)		5						
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	dehydroisoandosterone (Particulates not otherwise regulated (PNOR)(f)- Respirable fraction)		5						
US - Michigan Exposure Limits for Air Contaminants	dehydroisoandosterone (Particulates not otherwise regulated, Respirable dust)		5						

MATERIAL DATA

DEHYDROISOANDOSTERONE:

• Airborne particulate or vapor must be kept to levels as low as is practicably achievable given access to modern engineering controls and monitoring hardware. Biologically active compounds may produce idiosyncratic effects which are entirely unpredictable on the basis of literature searches and prior clinical experience (both recent and past).

PERSONAL PROTECTION

Consult your EHS staff for recommendations **EYE**

- When handling very small guantities of the material eye protection may not be required.
- For laboratory, larger scale or bulk handling or where regular exposure in an occupational setting occurs:
- Chemical goggles
- · Face shield. Full face shield may be required for supplementary but never for primary protection of eyes
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy
 document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should
 include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience.
 Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the
 event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should
 be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after
 workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]

HANDS/FEET

- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- frequency and duration of contact,
- · chemical resistance of glove material,
- glove thickness and

• dexterity

- Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- Rubber gloves (nitrile or low-protein, powder-free latex). Employees allergic to latex gloves should use nitrile gloves in
 preference.
- Double gloving should be considered.
- PVC gloves.
- Protective shoe covers.
- Head covering.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- nitrile rubber
- butyl rubber
- fluorocaoutchouc
- polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- For quantities up to 500 grams a laboratory coat may be suitable.
- For quantities up to 1 kilogram a disposable laboratory coat or coverall of low permeability is recommended. Coveralls should be buttoned at collar and cuffs.
- For quantities over 1 kilogram and manufacturing operations, wear disposable coverall of low permeability and disposable shoe covers.
- For manufacturing operations, air-supplied full body suits may be required for the provision of advanced respiratory protection.
- · Eye wash unit.
- Ensure there is ready access to an emergency shower.
- · For Emergencies: Vinyl suit

- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity
 information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not
 subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered,
 positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory. These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.

[.]

Try to avoid creating dust conditions.

RESPIRATOR

-					
Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator		
10 x PEL	P1	-	PAPR-P1		
	Air-line*	-	-		
50 x PEL	Air-line**	P2	PAPR-P2		
100 x PEL	-	P3	-		
		Air-line*	-		
100+ x PEL	-	Air-line**	PAPR-P3		
* - Negative pressure demand ** - Continuous flow					

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters. Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.

Class P3 intended for use against both mechanically and thermally generated particulates, e.g. metal fume. Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium. The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

Enclosed local exhaust ventilation is required at points of dust, fume or vapor generation.

HEPA terminated local exhaust ventilation should be considered at point of generation of dust, fumes or vapors.

Barrier protection or laminar flow cabinets should be considered for laboratory scale handling.

The need for respiratory protection should also be assessed where incidental or accidental exposure is anticipated: Dependent on levels of contamination, PAPR, full face air purifying devices with P2 or P3 filters or air supplied respirators should be evaluated.

Fume-hoods and other open-face containment devices are acceptable when face velocities of at least 1 m/s (200 feet/minute) are achieved. Partitions, barriers, and other partial containment technologies are required to prevent migration of the material to uncontrolled areas. For non-routine emergencies maximum local and general exhaust are necessary. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapors, etc. evaporating from tank (in still air)	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) Within each range the appropriate value depends on:	1-2.5 m/s (200-500 f/min.)
Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2.5 m/s (200-500 f/min.) for extraction of gases discharged 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid. Does not mix with water.			
State	Divided solid	Molecular Weight	288.43
Melting Range (°F)	300.2- 303.8	Viscosity	Not Applicable
Boiling Range (°F)	Not available	Solubility in water (g/L)	Immiscible
Flach Doint (°F)	Not available	nH (1% solution)	Not applicable

1 Iaoii Fuini (1)	INUL AVAIIANIC		NUL applicanie
Decomposition Temp (°F)	Not available	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available	Vapour Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not available.	Specific Gravity (water=1)	Not available
Lower Explosive Limit (%)	Not available	Relative Vapor Density (air=1)	>1
Volatile Component (%vol)	Negligible	Evaporation Rate	Not applicable

APPEARANCE

Dimorphous white powder; does not mix with water. Soluble in benzene, alcohol, ether.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

dehydroisoandosterone

TOXICITY AND IRRITATION

unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

■ Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

No significant acute toxicological data identified in literature search.

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

DEHYDROISOANDOSTERONE:

Very toxic to aquatic organisms.

• Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

• The disposition and fate of sex steroids (both natural and synthetic) in the environment must be considered in light of their potential to act as "endocrine disruptors". High doses of commercially available and illicit anabolic androgenic steroids (related to androgens, most being derivatives of testosterone, and which promote skeletal muscle growth coupled with male sexual characteristics) are found in sewage. Coupled with their direct action at the endocrine level, they could pose particular concern with respect to the health of aquatic organisms. Little work has been performed on low-level exposure to androgens (in contrast to that performed on female sex hormones, the oestrogens). Androgenic steroid-spiked feeds have been long-used, however, for growth enhancement and for forcing desirable sex-ratios (via sex-inversion) in aquacultured fin fish. Androgens (such as could be expected from abuse of illicit anabolic steroids) have the potential, at low levels (ppb), to elicit aquatic effects (e.g., skewed sex-ratios), This is illustrated by the fact that short-term, brief immersion of fish fry in androgenic steroid-spiked water (17-methyltestosterone and 17-methyldihydrotestosterone) can induce sex inversion ; aromatisable androgens, such as 17-methyltestosterone, can also lead to "paradoxical feminisation". Although the short-term concentrations required for total sex inversion in fish are orders of magnitude higher than what could be expected in sewage, the question remains as to what other possible effects (e.g., tumorigenic/teratogenic) could occur from continual exposures to androgens from sewage effluent, especially during critical developmental milestones.

17-beta-trenbolone (a synthetic androgen) which is a metabolite of a steroidal growth promoter administered to cattle has shown to be potent in the aquatic environment. This potent androgenic chemical is present in relatively high concentrations in waters receiving cattle feedlot effluent and is probably responsible for the masculinisation of fish observed at these locations.
DO NOT discharge into sewer or waterways.

EcotoxicityIngredientPersistence: Water/SoilPersistence: AirBioaccumulationMobilitydehydroisoandosteroneHIGHLOWMED

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.
 Recycle wherever possible.

- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- · Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

DOT:

Symbols:	G	Hazard class or Division:	9	
Identification Numbers:	UN3077	PG:	III	
Label Codes:	9	Special provisions:	8, 146, 33 N20, T1, T	5, B54, IB8, IP3, P33
Packaging: Exceptions:	155	Packaging: Non-bulk:	213	
Packaging: Exceptions:	155	Quantity limitations: Passenger aircraft/rail:	No limit	
Quantity Limitations: Cargo aircraft only:	No limit	Vessel stowage: Location:	А	
Vessel stowage: Other:	None			
Hazardous materials description Environmentally hazardous subs Air Transport IATA:	is and proper shipping names: stance, solid, n.o.s			
ICAO/IATA Class:	9	ICAO/IATA Subrisk:	豴	
UN/ID Number:	3077	Packing Group:	III	
Special provisions:	A97			
Shipping Name: ENVIR DEHYDROISOANDOSTERONE Maritime Transport IMDG	RONMENTALLY HAZARDC	DUS SUBSTANCE, SO	DLID, N.C	.S. *(CONTAINS
IMDG Class:	9	IMDG Subrisk:	None	
UN Number:	3077	Packing Group:	111	
EMS Number:	F-A,S-F	Special provisions:	274 909 94	14
Limited Quantities:	5 kg			

Shipping Name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (contains dehydroisoandosterone)

Section 15 - REGULATORY INFORMATION

dehydroisoandosterone (CAS: 53-43-0) is found on the following regulatory lists; "Canada Domestic Substances List (DSL)"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Ingestion may produce health damage*.
- Cumulative effects may result following exposure*.
- Limited evidence of a carcinogenic effect*.
- * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

• The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Mar-16-2009 Print Date:Apr-21-2010