Diethylmaleate

2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800 **EMERGENCY** ChemWatch Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS

C8-H12-O4, C2H5OOCCH=CHCOOC2H5, "maleic acid, diethyl ester", "2-butenedioic acid (Z)-, diethyl ester", diethylmaleate, "ethyl maleate", "diethyl malate"

EMERGENCY OVERVIEW

RISK

May form explosive peroxides. May cause SENSITISATION by skin contact. HARMFUL - May cause lung damage if swallowed. Irritating to eyes, respiratory system and skin. Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Repeated exposure potentially causes skin dryness and cracking*. Vapours potentially cause drowsiness and dizziness*. Cumulative effects may result following exposure*. Inhalation and/or skin contact may produce health damage*. * (limited evidence).

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

■ Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733).

Although ingestion is not thought to produce harmful effects (as classified under EC Directives), the material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.

EYE

■ Limited evidence or practical experience suggests, that the material may cause eye irritation in a substantial number of individuals. Prolonged eye contact may cause inflammation characterised by a temporary redness of the conjunctiva (similar to windburn).

SKIN

• The material may cause mild but significant inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterised by redness, swelling and blistering.

- Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.
- Open cuts, abraded or irritated skin should not be exposed to this material.

• Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.

■ Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo.

■ Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.

• The main effects of simple esters are irritation, stupor and insensibility. Headache, drowsiness, dizziness, coma and behavioural changes may occur. Respiratory symptoms may include irritation, shortness of breath, rapid breathing, throat inflammation, bronchitis, lung inflammation and pulmonary oedema, sometimes delayed. Nausea, vomiting, diarrhoea and cramps are observed. Liver and kidney damage may result from massive exposures.

CHRONIC HEALTH EFFECTS

• Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.

Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population.

Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure.

Diethyl maleate rapidly conjugates with tissue stores of glutathione and reduces its level significantly.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS			
NAME	(CAS RN	%
Diethylmaleate	1	141-05-9	>98

Section 4 - FIRST AID MEASURES

SWALLOWED

- Immediately give a glass of water.
- First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.
- If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

EYE

If this product comes in contact with the eyes:

- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Seek medical attention without delay; if pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

If skin contact occurs:

- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

INHALED

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.

NOTES TO PHYSICIAN

• Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. for simple esters:

BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- Monitor and treat, where necessary, for pulmonary oedema .
- Monitor and treat, where necessary, for shock.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution
 where patient is able to swallow, has a strong gag reflex and does not drool.
- Give activated charcoal.

ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT

- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph.
- Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome.
- Consult a toxicologist as necessary.

BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994.

Section 5 - FIRE FIGHTING MEASURES

Vapor Pressure (mmHg):	0.975 @ 14 C
Upper Explosive Limit (%):	Not available
Specific Gravity (water=1):	1.064
Lower Explosive Limit (%):	Not available

EXTINGUISHING MEDIA

- Alcohol stable foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

FIRE FIGHTING

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- Avoid spraying water onto liquid pools.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.

• If safe to do so, remove containers from path of fire.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Combustible.
- Slight fire hazard when exposed to heat or flame.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- On combustion, may emit toxic fumes of carbon monoxide (CO).
- May emit acrid smoke.
- Mists containing combustible materials may be explosive.

Combustion products include: carbon dioxide (CO2), other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

May emit corrosive fumes.

WARNING: Long standing in contact with air and light may result in the formation

of potentially explosive peroxides.

FIRE INCOMPATIBILITY

Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- Control personal contact by using protective equipment.
- Contain and absorb spill with sand, earth, inert material or vermiculite.
- Wipe up.
- Place in a suitable, labelled container for waste disposal.

MAJOR SPILLS

Chemical Class: ester and ethers

For release onto land: recommended sorbents listed in order of priority.

SORBENT TYPE	RANK	APPLICATION	COLLECTION	LIMITATIONS
LAND SPILL - SMALL				
cross-linked polymer - particulate	1	shovel	shovel	R, W, SS
cross-linked polymer - pillow	1	throw	pitchfork	R, DGC, RT
sorbent clay - particulate	2	shovel	shovel	R,I, P
wood fiber - particulate	3	shovel	shovel	R, W, P, DGC
wood fiber - pillow	3	throw	pitchfork	R, P, DGC, RT

treated wood fiber - pillow LAND SPILL - MEDIUM	3	throw	pitchfork	DGC, RT
cross-linked polymer - particulate	1	blower	skiploader	R,W, SS
cross-linked polymer - pillow	2	throw	skiploader	R, DGC, RT
sorbent clay - particulate	3	blower	skiploader	R, I, P
polypropylene - particulate	3	blower	skiploader	W, SS, DGC
expanded mineral - particulate	4	blower	skiploader	R, I, W, P, DGC
wood fiber - particulate Legend	4	blower	skiploader	R, W, P, DGC

DGC: Not effective where ground cover is dense

- R: Not reusable
- I: Not incinerable

P: Effectiveness reduced when rainy

RT:Not effective where terrain is rugged

SS: Not for use within environmentally sensitive sites

W: Effectiveness reduced when windy

Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control;

R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988.

Moderate hazard.

- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labelled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite.
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

DO NOT allow clothing wet with material to stay in contact with skin

The substance accumulates peroxides which may become hazardous only if it evaporates or is distilled or otherwise treated to concentrate the peroxides. The substance may concentrate around the container opening for example.

Purchases of peroxidisable chemicals should be restricted to ensure that the chemical is used completely before it can become peroxidised.

- A responsible person should maintain an inventory of peroxidisable chemicals or annotate the general chemical inventory to indicate which chemicals are subject to peroxidation. An expiration date should be determined. The chemical should either be treated to remove peroxides or disposed of before this date.
- The person or laboratory receiving the chemical should record a receipt date on the bottle. The individual opening the container should add an opening date.
- Unopened containers received from the supplier should be safe to store for 18 months.
- Opened containers should not be stored for more than 12 months.
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.

- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.

RECOMMENDED STORAGE METHODS

- Metal can or drum
- Packaging as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

- Store in original containers.
- Keep containers securely sealed.
- No smoking, naked lights or ignition sources.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.
- Store at 4 °C.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

The following materials had no OELs on our records

diethyl maleate: CAS:141-05-9

PERSONAL PROTECTION

RESPIRATOR

• Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) EYE

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

HANDS/FEET

- Wear chemical protective gloves, eg. PVC.
- Wear safety footwear or safety gumboots, eg. Rubber

NOTE:

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

For esters:

Do NOT use natural rubber, butyl rubber, EPDM or polystyrene-containing materials.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and

dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

OTHER

- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

ENGINEERING CONTROLS

• Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection.

An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)
Within each range the appropriate value depends on:	
Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Liquid.

Mixes with water.			
State	Liquid	Molecular Weight	172.2
Melting Range (°F)	14	Viscosity	Not Available
Boiling Range (°F)	437	Solubility in water (g/L)	Miscible
Flash Point (°F)	200	pH (1% solution)	Not available
Decomposition Temp (°F)	Not available.	pH (as supplied)	Not applicable
Autoignition Temp (°F)	662	Vapor Pressure (mmHg)	0.975 @ 14 C
Upper Explosive Limit (%)	Not available	Specific Gravity (water=1)	1.064
Lower Explosive Limit (%)	Not available	Relative Vapour Density (air=1)	5.93
Volatile Component (%vol)	Not available	Evaporation Rate	Not available

APPEARANCE

Liquid; mixes with water. Miscible with alcohol, diethyl ether, paraffinic hydrocarbons. Readily hydrolysed by alkaline solutions.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerisation will not occur.

STORAGE INCOMPATIBILITY

- Esters react with acids to liberate heat along with alcohols and acids.
- Strong oxidising acids may cause a vigorous reaction with esters that is sufficiently exothermic to ignite the reaction products.
- Heat is also generated by the interaction of esters with caustic solutions.
- Flammable hydrogen is generated by mixing esters with alkali metals and hydrides.
- Esters may be incompatible with aliphatic amines and nitrates.
- Avoid strong acids, acid chlorides, acid anhydrides and chloroformates.
- Avoid reaction with oxidising agents, bases and strong reducing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

diethyl maleate

TOXICITY AND IRRITATION

DIETHYL MALEATE:

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

ΤΟΧΙΟΙΤΥ	IRRITATION
Oral (rat) LD50: 3200 mg/kg	Skin (rabbit):10 mg/24h(open)Mild
Dermal (rat) LD50: 5000 mg/kg	Skin (rabbit): 530 mg(open)-Mild
Intraperitoneal (rat) LD50: 3070 mg/kg	Eye (rabbit): 500 mg (open)
Dermal (rabbit) LD50: 4000 mg/kg	Eye (rabbit): 500 mg/24h - Mild

• Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic

individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

Group B substances are derived from linear diacids and mono functional alcohols. They have widespread applications as lubricants, solvents, and plasticisers. They are easily metabolised and excreted via the urine. They have low toxicity. They may cause liver enlargement in experimental animals but do not cause reproductive, developmental or genetic effects except at high levels that are toxic to the mother.

Section 12 - ECOLOGICAL INFORMATION

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Ecotoxicity				
Ingredient	Persistence: Water/Soil	Persistence: Air	Bioaccumulation	Mobility
diethyl maleate	LOW	No Data Available	LOW	HIGH

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

- Containers may still present a chemical hazard/ danger when empty.
- Return to supplier for reuse/ recycling if possible.
- Otherwise:
- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- Where possible retain label warnings and MSDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Authority for disposal.
- Bury or incinerate residue at an approved site.
- Recycle containers if possible, or dispose of in an authorised landfill.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

diethyl maleate (CAS: 141-05-9) is found on the following regulatory lists;

"Canada List of Prohibited and Restricted Cosmetic Ingredients (The Cosmetic Ingredient ""Hotlist"")", "IMO IBC Code Chapter 17: Summary of minimum requirements", "International Fragrance Association (IFRA) Standards Prohibited", "US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants", "US FDA List of ""Indirect"" Additives Used in Food Contact Substances", "US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Inhalation and/or skin contact may produce health damage*.
- Cumulative effects may result following exposure*.
- Repeated exposure potentially causes skin dryness and cracking*.
- Vapours potentially cause drowsiness and dizziness*.
- * (limited evidence).

Denmark Advisory list for selfclassification of dangerous substances

Substance	CAS	Suggested codes
diethyl maleate	141- 05- 9	R43

■ Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

■ The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

■ For detailed advice on Personal Protective Equipment, refer to the following U.S. Regulations and Standards:

OSHA Standards - 29 CFR: 1910.132 - Personal Protective Equipment - General requirements 1910.133 - Eye and face protection 1910.134 - Respiratory Protection 1910.136 - Occupational foot protection 1910.138 - Hand Protection Eye and face protection - ANSI Z87.1 Foot protection - ANSI Z41 Respirators must be NIOSH approved.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700. www.Chemwatch.net

Issue Date: Jul-14-2009

Print Date:Apr-10-2012