Material Safety Data Sheet

Formononetin

sc-202614

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Formononetin

STATEMENT OF HAZARDOUS NATURE

NFPA

SUPPLIER
Santa Cruz Biotechnology, Inc.
2145 Delaware Avenue
Santa Cruz, California 95060
800.457.3801 or 831.457.3800

EMERGENCY:
ChemWatch
Within the US & Canada: 877-715-9305
Outside the US & Canada: +800 2436 2255
(1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS
C16-H12-O4, 7-hydroxy-3-(4-methoxyphenyl)-4H-1-benzopyran-4-one, "7-hydroxy-4' -methoxyisoflavone", "biochanin B", formononetol, neochanin, "isoflavone/ phytosterol/ phytooestrogen/ phytoestrogen"

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

<table>
<thead>
<tr>
<th>Category</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Toxicity</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Body Contact</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Reactivity</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

CANADIAN WHMIS SYMBOLS
None

EMERGENCY OVERVIEW
RISK

POTENTIAL HEALTH EFFECTS
ACUTE HEALTH EFFECTS

SWALLOWED
- Although ingestion is not thought to produce harmful effects, the material may still be damaging to the health of the individual following ingestion, especially where pre-existing organ (e.g. liver, kidney) damage is evident.
- Considered an unlikely route of entry in commercial/industrial environments.

EYE
- Although the material is not thought to be an irritant, direct contact with the eye may produce transient discomfort characterized by tearing or conjunctival redness (as with windburn).

SKIN
- The material is not thought to produce adverse health effects or skin irritation following contact (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.

INHALED
- The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS
- Principal routes of exposure are usually by skin contact/absorption and inhalation of generated dust. Human and animal exposures to the phytoestrogens (for example the isoflavones, some flavonoids, saponin, coumestans and lignans) can be high because these compounds are found in many foods. Interest in the dietary phytoestrogens derives from their apparent protective effects against cancer, cardiovascular disease and osteoporosis. High levels, over extended periods, may produce toxic effects. However, toxicological studies revealed that when administered in isolated or enriched form or at high doses isoflavones impair the function of the thyroid gland. It cannot be ruled out that this oestrogen-like effect also encourages the onset of breast cancer. Since women are more at risk of developing cancer in any case after menopause, the intake of food supplements with a high isoflavone content may present unexpected risks for this group of consumers.
- Although phytoestrogens exist as the inactive glycoside in food products, bacterial beta-glycosidases, in the colon, hydrolyse the glycosides to the active aglycones.
- A common feature of the phytoestrogens is their striking similarity to 17beta-oestradiol and the synthetic oestrogen, diethylstilboestrol. There is evidence that phytoestrogens may mediate oestrogen-like effects by direct interaction with the oestrogen receptor of cells. Although the hormonal activity of phytoestrogens is two to five orders of magnitude below that of oestradiol, their high concentration in certain plants and their slower metabolic disposition, can lead to tissue levels exceeding those of endogenous oestrogens by a factor of a thousand or more.
- There is also evidence that phytoestrogens may influence animal and human health by acting as antioxidants and hydrogen peroxide scavengers or by interfering with eicosanoid and cytokine production and cell signalling.
- Anogenital distance, puberty onset, oestrus cycling, growth, sex-organ weight and hormonal profile are indicators of oestrogen- or anti-oestrogen like activity. Of interest is the finding that low doses of the dietary isoflavone, genistein, taken by pregnant rats produced shorter anogenital distances in the offspring; high doses did not produce this effect. Exposure to a 5% flaxseed diet (high in lignans) during pregnancy and lactation, resulted in the delayed puberty onset in rats (anti-oestrogenic effect). By contrast, a 10% flaxseed diet produced an earlier onset of puberty (an oestrogenic effect), but longer oestrus cycles due to prolonged dioestrous (an anti-oestrogenic effect). There have been many reports of phytoestrogens disrupting reproductive activity in sheep. Infertility in sheep (so-called “clover disease”) has been traced to isoflavone concentrations in clover (up to 5% dry weight). Temporary infertility is attributed to increased embryo mortality as a result of embryo abortion and a reduction in ovulation. Permanent infertility, in sheep, is purported to occur after 3 years of exposure to dietary oestrogenic compounds; this infertility is due to permanent changes in the architecture of the cervix and also changes in the viscoelasticity of the cervical mucous which prevents the transport of sperm through the cervix. In addition to these effects, phytoestrogens exert effects on oestrogen-sensitive tissues such as the mammary gland and female reproductive organs of the ewe. Cattle have also been shown to be sensitive to the oestrogen-like effects of dietary phytoestrogens. Specific observations include swelling of the vulva, discharge of cervical mucous, uterus enlargements and cystic ovaries. Irregular oestrous cycles, including periods of anoestrous, and decreased rates of conception have also been reported. The impact on reproductive activity, by phytoestrogen on humans, is unknown.
- The recent practice of feeding infants soy-based formula raises issues related to the long-term health effects of exposure during development. It has been recognised, for example, that the practice may be associated with goiter (thyroid enlargement associated with thyroid hormone deficiency) in humans and animals. Soy phytoestrogens inhibit thyroid hormone synthesis at concentrations which occur in infant formula.
- If sufficient inhibition of iodide uptake by the goiter occurs, formation of thyroid hormones is depressed. These hormones are essential to the regulation of oxygen consumption and metabolism throughout the body. Clinical manifestations of this so-called "hypothyroidism (or athyreia)" include low metabolic rate, a tendency to gain weight, somnolence, and myxoedema (a relatively hard oedema of the subcutaneous tissue), dryness and loss of hair, low body temperature, hoarseness, muscle weakness, a slow return of the muscle after tendon jerk, and slow mentation. When hypothyroidism occurs in women, early in pregnancy, the foetus is at risk of impaired physical and mental development, the severity of the impairment depending on the degree of hypothyroidism.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>NAME</th>
<th>CAS RN</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>formononetin</td>
<td>485-72-3</td>
<td>>98</td>
</tr>
</tbody>
</table>

Section 4 - FIRST AID MEASURES
SWALLOWED
· Immediately give a glass of water. · First aid is not generally required. If in doubt, contact a Poisons Information Center or a doctor.

EYE
■ If this product comes in contact with the eyes: · Wash out immediately with fresh running water. · Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

SKIN
■ If skin contact occurs: · Immediately remove all contaminated clothing, including footwear · Flush skin and hair with running water (and soap if available).

INHALED
· If dust is inhaled, remove from contaminated area. · Encourage patient to blow nose to ensure clear passage of breathing. · If irritation or discomfort persists seek medical attention.

NOTES TO PHYSICIAN
■ Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not available</td>
</tr>
<tr>
<td>Specific Gravity (water=1)</td>
<td>Not available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not available</td>
</tr>
<tr>
<td>Relative Vapor Density (air=1)</td>
<td>>1</td>
</tr>
</tbody>
</table>

EXTINGUISHING MEDIA
· Foam.
· Dry chemical powder.

FIRE FIGHTING
· Use water delivered as a fine spray to control fire and cool adjacent area.
· DO NOT approach containers suspected to be hot.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS
· Solid which exhibits difficult combustion or is difficult to ignite.
· Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
· Combustion products include: carbon monoxide (CO).

FIRE INCOMPATIBILITY
■ Avoid contamination with strong oxidizing agents as ignition may result.

PERSONAL PROTECTION
Glasses:
Safety Glasses.

Gloves:

Respirator:
Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS
· Clean up all spills immediately.
· Avoid contact with skin and eyes.

MAJOR SPILLS
· Clear area of personnel and move upwind.
· Alert Emergency Responders and tell them location and nature of hazard.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING
· Limit all unnecessary personal contact.
· Wear protective clothing when risk of exposure occurs.
· Use in a well-ventilated area.
· When handling DO NOT eat, drink or smoke.
· Always wash hands with soap and water after handling.
· Avoid physical damage to containers.
· Use good occupational work practice.
· Observe manufacturer's storing and handling recommendations.

RECOMMENDED STORAGE METHODS
· Polyethylene or polypropylene container.
• Packing as recommended by manufacturer.

STORAGE REQUIREMENTS
• Keep dry.
• Store in original containers.
• Keep containers securely sealed.
• No smoking, naked lights or ignition sources.
• Store in a cool, dry, well-ventilated area.
• Store away from incompatible materials.
• Protect containers against physical damage.
• Check regularly for leaks.
• Observe manufacturer’s storing and handling recommendations.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

<table>
<thead>
<tr>
<th>Source</th>
<th>Material</th>
<th>TWA ppm</th>
<th>TWA mg/m³</th>
<th>STEL ppm</th>
<th>STEL mg/m³</th>
<th>Peak ppm</th>
<th>Peak mg/m³</th>
<th>TWA F/CC</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>US - Oregon Permissible Exposure Limits (Z-3)</td>
<td>formononetin (Inert or Nuisance Dust: Total dust)</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(d)</td>
</tr>
<tr>
<td>US OSHA Permissible Exposure Levels (PELs) - Table Z3</td>
<td>formononetin (Inert or Nuisance Dust: (d) Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US OSHA Permissible Exposure Levels (PELs) - Table Z3</td>
<td>formononetin (Inert or Nuisance Dust: (d) Total dust)</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Hawaii Air Contaminant Limits</td>
<td>formononetin (Particulates not otherwise regulated - Total dust)</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Hawaii Air Contaminant Limits</td>
<td>formononetin (Particulates not otherwise regulated - Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Oregon Permissible Exposure Limits (Z-3)</td>
<td>formononetin (Inert or Nuisance Dust: Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(d)</td>
</tr>
<tr>
<td>US - California Permissible Exposure Limits for Chemical Contaminants</td>
<td>formononetin (Particulates not otherwise regulated Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(n)</td>
</tr>
<tr>
<td>US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants</td>
<td>formononetin (Particulates not otherwise regulated Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants</td>
<td>formononetin (Particulates not otherwise regulated (PNOR)(f)-Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
US - Michigan
Exposure Limits
for Air
Contaminants
formononetin
(Particulates not otherwise regulated, Respirable dust)

<table>
<thead>
<tr>
<th>Country/Region</th>
<th>Exposure Limits (Particles)</th>
<th>See Appendix B current TLV/BEI Book</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada - Prince Edward Island</td>
<td>formononetin (Particles (Insoluble or Poorly Soluble) [NOS] Inhalable particles)</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PERSONAL PROTECTION

![Respirator and Eye Protection]

Respirator
- Particulate
- Consult your EHS staff for recommendations

Eye
- Safety glasses.
- Safety glasses with side shields.

Hands/Feet
- Wear general protective gloves, e.g., light weight rubber gloves.

Other
- Overalls.
- Impervious protective clothing.
- Eyewash unit.

Engineering Controls
- General exhaust is adequate under normal operating conditions. If risk of overexposure exists, wear an approved respirator.

Section 9 - Physical and Chemical Properties

Physical Properties
- Solid
- Does not mix with water.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Divided solid</td>
</tr>
<tr>
<td>Melting Range (°F)</td>
<td>496.4</td>
</tr>
<tr>
<td>Boiling Range (°F)</td>
<td>Not available</td>
</tr>
<tr>
<td>Solubility in water (g/L)</td>
<td>Partly miscible</td>
</tr>
<tr>
<td>Flash Point (°F)</td>
<td>Not available</td>
</tr>
<tr>
<td>pH (1% solution)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Decomposition Temp (°F)</td>
<td>Not available</td>
</tr>
<tr>
<td>pH (as supplied)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Autoignition Temp (°F)</td>
<td>Not available</td>
</tr>
<tr>
<td>Vapour Pressure (mmHG)</td>
<td>Negligible</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not available</td>
</tr>
<tr>
<td>Specific Gravity (water=1)</td>
<td>Not available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not available</td>
</tr>
<tr>
<td>Relative Vapor Density (air=1)</td>
<td>>1</td>
</tr>
<tr>
<td>Volatile Component (%vol)</td>
<td>Negligible</td>
</tr>
<tr>
<td>Evaporation Rate</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Appearance
- White crystalline powder; does not mix well with water. Soluble in alcohol.

Section 10 - Chemical Stability

Conditions Contributing to Instability
- Presence of incompatible materials.
- Product is considered stable.

Storage Incompatibility
Avoid reaction with oxidizing agents.
For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

FORMONONETIN

TOXICITY AND IRRITATION
FORMONONETIN:
■ No significant acute toxicological data identified in literature search.

Section 12 - ECOLOGICAL INFORMATION

No data

Ecotoxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
<th>Bioaccumulation</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>formononetin</td>
<td>HIGH</td>
<td>LOW</td>
<td>MED</td>
<td></td>
</tr>
</tbody>
</table>

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions
All waste must be handled in accordance with local, state and federal regulations.
· Consult manufacturer for recycling options and recycle where possible.
· Consult Waste Management Authority for disposal.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

formononetin (CAS: 485-72-3) is found on the following regulatory lists;
"US - Hawaii Air Contaminant Limits","US - Oregon Permissible Exposure Limits (Z-3)","US OSHA Permissible Exposure Levels (PELs) - Table Z3"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE
■ May possibly affect fertility*.
■ May possibly be harmful to the foetus/embryo*.
* (limited evidence).

ND
Substance CAS Suggested codes formononetin 485-72-3

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.