Ochratoxin A

sc-202749

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Ochratoxin A

STATEMENT OF HAZARDOUS NATURE

NFPA

SUPPLIER
Company: Santa Cruz Biotechnology, Inc.
Address:
2145 Delaware Ave
Santa Cruz, CA 95060
Telephone: 800.457.3801 or 831.457.3800
Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305
Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE
The ochratoxins constitute a group of closely linked derivatives of isocoumarine linked to L-phenylalanine and are classified according to biosynthetic origin as "pentaketides" within the group of polyketides. Naturally occurring mycotoxins (phytotoxins) produced by Aspergillus ochraceus, A. sulphureus, A. meleus, Penicillium viridicatum. In colder climates, ochratoxins are produced by Penicillium strains, whilst in tropical and subtropical regions, they are produced by Aspergillus. As these molds occur widely, the toxin has been found as a natural contaminant on corn, peanuts, storage grains, cottonseed and other decaying vegetation. Residues of ochratoxin have been detected in samples of animals slaughtered immediately after consuming contaminated feed. It has been detected at levels of 10-920 μg/kg in sausage, ham and bacon samples. Residues of ochratoxin are not generally found in ruminants because ochratoxin is cleaved in the fore-stomachs by protozoan and bacterial enzymes to the non-toxic ochratoxin alpha. In some calves however, ochratoxin A has been found at low levels in the kidneys indicating that the calves are not yet functioning as ruminants.

SYNONYMS
N-(3S,4S,5S,6S)-3-methyl-1-oxo-7-isochromanyl)carbonyl)-, 3-phenyl-L-alanine, C20-H18-Cl-N-O6, C20-H18-Cl-N-O6, N-(((3R)-5-chloro-8-hydroxy-3-methyl-1-oxo-7-isochromanyl)carbonyl)-, 3-phenyl-L-alanine, N-(((3R)-5-chloro-8-hydroxy-3-methyl-1-oxo-7-isochromanyl)carbonyl)-, 3-phenyl-L-alanine, "pentaketide/ polyketide/ mycotoxin/ phytotoxin"

Section 2 - HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW
Ochratoxin A in human blood is bound strongly to serum albumin. Ochratoxin treatment in experimental models produces proximal tubular dysfunction and necrosis in rats, whilst repeated small doses of ochratoxin A are required to produce kidney damage. A single dose of ochratoxin A produces severe diarrhoea and death without any apparent effect on the kidneys. Thus ochratoxin (or a hepatic metabolite) may be activated by a toxic reactive metabolite within the kidney. Ochratoxin A in human blood is bound strongly to serum albumin.

EYE
- Although the material is not thought to be an irritant, direct contact with the eye may cause transient discomfort characterized by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals.

SKIN
- Skin contact with the material may produce severely toxic effects; systemic effects may result following absorption and these may be fatal.
- The material is not thought to be a skin irritant (as classified using animal models). Abrasive damage however, may result from prolonged exposures. Good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED
- Inhalation of dusts, generated by the material, during the course of normal handling, may produce severely toxic effects; these may be fatal.
- The material is not thought to produce respiratory irritation (as classified using animal models). Nevertheless inhalation of dusts, or fume, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.
- Inhalation of dusts, generated by the material during the course of normal handling, may produce serious damage to the health of the individual.

CHRONIC HEALTH EFFECTS
- There is ample evidence that this material can be regarded as being able to cause cancer in humans based on experiments and other information.
- Based on experiments and other information, there is ample evidence to presume that exposure to this material can cause genetic defects that can be inherited.
- Ample evidence exists, from results in experimentation, that developmental disorders are directly caused by human exposure to the material.
- Results in experiments suggest that this material may cause disorders in the development of the embryo or fetus, even when no signs of poisoning show in the mother.
- The incidence of and mortality from urothelial urinary tract tumours have been correlated with geographical distribution of Balkan endemic nephropathy in Bulgaria and Yugoslavia. A relatively high frequency of contamination of cereals and bread with ochratoxin A has been reported in an area of Yugoslavia where Balkan endemic nephropathy is present.
- Balkan endemic nephropathy is a chronic disease that predominantly affects women and progresses slowly up to death. Autopsy shows that kidneys are notably reduced in size. The histological lesions are interstitial fibrosis, tubular degeneration and hyalization of glomeruli in the more superficial part of the cortex.

One study revealed the presence of ochratoxin in the serum of significant number of the inhabitants of 2 villages (6.6% of 639 samples taken) from the area in which the disease occurred. A similar study conducted in Poland revealed similar results whilst a study conducted in the former Federal Republic of Germany showed 56.6% of serum samples contained ochratoxin A. When administered by gavage, ochratoxin substantially increased the incidence of uncommon cell carcinomas of the kidney in male and female rats and also increased the incidence and multiplicity of the mammary glands in female rats. When introduced into the diet, renal adenomas and carcinomas were observed in male mice and some hepatocellular carcinomas were observed in female mice. In another study dietary ochratoxin A induced hepatic cell tumours in male mice. Intraperitoneal injection of pregnant mice with ochratoxin A resulted in increased prenatal mortality, decreased foetal weight and various foetal malformations, including exencephaly and anomalies of the eyes, face, digits and tail. Subcutaneous administration to rats on gestation days 5–7 resulted in a high number of malformations including hydroencephaly, omphalocele and anophthalmia as well as a shift in the position of the oesophagus. In a further study low levels of dietary protein were shown to enhance the teratogenic potential of ochratoxin A in the rat.
Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray. Exposure to the material for prolonged periods may cause physical defects in the developing embryo (teratogenesis).

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

<table>
<thead>
<tr>
<th>Property</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Toxicity</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Body Contact</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Reactivity</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

NAME

<table>
<thead>
<tr>
<th>NAME</th>
<th>CAS RN</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ochratoxin A</td>
<td>303-47-9</td>
<td>>98</td>
</tr>
</tbody>
</table>

Section 4 - FIRST AID MEASURES

SWALLOWED

- Give a slurry of activated charcoal in water to drink. NEVER GIVE AN UNCONSCIOUS PATIENT WATER TO DRINK.
- At least 3 tablespoons in a glass of water should be given.
- Although induction of vomiting may be recommended (IN CONSCIOUS PERSONS ONLY), such a first aid measure is dissuaded because to the risk of aspiration of stomach contents. (i) It is better to take the patient to a doctor who can decide on the necessity and method of emptying the stomach. (ii) Special circumstances may however exist; these include non-availability of charcoal and the ready availability of the doctor.

NOTE: If vomiting is induced, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. NOTE: Wear protective gloves when inducing vomiting.

REFER FOR MEDICAL ATTENTION WITHOUT DELAY.

EYE

- If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Continue flushing until advised to stop by the Poisons Information Center or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin or hair contact occurs: Immediately flush body and clothes with large amounts of water, using safety shower if available.
- Quickly remove all contaminated clothing, including footwear.
- Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Center.
- Transport to hospital, or doctor.

INHALED

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.

NOTES TO PHYSICIAN

- Treat symptomatically.
 for poisons (where specific treatment regime is absent):

BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- Monitor and treat, where necessary, for pulmonary edema.

(ICS20305/20307).
Monitor and treat, where necessary, for shock.
Anticipate seizures.
DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.

ADVANCED TREATMENT

Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
Positive-pressure ventilation using a bag-valve mask might be of use.
Monitor and treat, where necessary, for arrhythmias.
Start an IV D5W TKO. If signs of hypovolemia are present use lactated Ringers solution. Fluid overload might create complications.
Drug therapy should be considered for pulmonary edema.
Hypotension with signs of hypovolemia requires the cautious administration of fluids. Fluid overload might create complications.
Treat seizures with diazepam.
Proparacaine hydrochloride should be used to assist eye irrigation.

BRONSTEIN, A.C. and CURRANCE, P.L.
EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994.

Section 5 - FIRE FIGHTING MEASURES

Vapour Pressure (mmHG): Negligible
Upper Explosive Limit (%): Not available
Specific Gravity (water=1): Not available
Lower Explosive Limit (%): Not available

EXTINGUISHING MEDIA

- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog - Large fires only.

FIRE FIGHTING

- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Use fire fighting procedures suitable for surrounding area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.
- Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), hydrogen chloride, phosgene, nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.
- May emit poisonous fumes.

FIRE INCOMPATIBILITY

- Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:
Gloves:
Respirator:
Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Clean up waste regularly and abnormal spills immediately.
- Avoid breathing dust and contact with skin and eyes.
- Wear protective clothing, gloves, safety glasses and dust respirator.
Use dry clean up procedures and avoid generating dust.
Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
Dampen with water to prevent dusting before sweeping.
Place in suitable containers for disposal.

MAJOR SPILLS

- Clear area of personnel and move upwind.
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by all means available, spillage from entering drains or water courses.
- Consider evacuation (or protect in place).
- No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.
- Water spray or fog may be used to disperse / absorb vapour.
- Contain or absorb spill with sand, earth or vermiculite.
- Collect recoverable product into labelled containers for recycling.
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.
- Do NOT cut, drill, grind or weld such containers
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

- Glass container.
- Lined metal can, Lined metal pail/drum
- Plastic pail
- Polyliner drum
- Packing as recommended by manufacturer.
- Check all containers are clearly labeled and free from leaks.

For low viscosity materials
- Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.
- For materials with a viscosity of at least 2630 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.):
 - Removable head packaging;
 - Cans with friction closures and
 - low pressure tubes and cartridges may be used.
- Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages *. In addition, where inner packagings are glass and contain liquids of packing group I and II there must be sufficient inert absorbent to absorb any spillage *. Unless the outer packaging is a close fitting molded plastic box and the substances are not incompatible with the plastic. All inner and sole packagings for substances that have been assigned to Packaging Groups I or II on the basis of inhalation toxicity criteria, must be hermetically sealed.

STORAGE REQUIREMENTS
- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer’s storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

| X | X | + | X | X | + |

X: Must not be stored together
O: May be stored together with specific preventions
+: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

<table>
<thead>
<tr>
<th>Source</th>
<th>Material</th>
<th>TWA ppm</th>
<th>TWA mg/m³</th>
<th>STEL ppm</th>
<th>STEL mg/m³</th>
<th>Peak ppm</th>
<th>Peak mg/m³</th>
<th>TWA F/CC</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>US - Oregon Permissible Exposure Limits (Z3)</td>
<td>ochratoxin A (Inert or Nuisance Dust: (d) Total dust)</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>US OSHA Permissible Exposure Levels (PELs) - Table Z3</td>
<td>ochratoxin A (Inert or Nuisance Dust: (d) Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US OSHA Permissible Exposure Levels (PELs) - Table Z3</td>
<td>ochratoxin A (Inert or Nuisance Dust: (d) Total dust)</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Hawaii Air Contaminant Limits</td>
<td>ochratoxin A (Particulates not otherwise regulated - Total dust)</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Hawaii Air Contaminant Limits</td>
<td>ochratoxin A (Particulates not otherwise regulated - Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Oregon Permissible Exposure Limits (Z3)</td>
<td>ochratoxin A (Inert or Nuisance Dust: (d) Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants</td>
<td>ochratoxin A (Particulates not otherwise regulated Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants</td>
<td>ochratoxin A (Particulates not otherwise regulated (PNOR) (f)-Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Michigan Exposure Limits for Air Contaminants</td>
<td>ochratoxin A (Particulates not otherwise regulated, Respirable dust)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MATERIAL DATA

OCHRATOXIN A:
- Airborne particulate or vapor must be kept to levels as low as is practicably achievable given access to modern engineering controls and monitoring hardware. Biologically active compounds may produce idiosyncratic effects which are entirely unpredictable on the basis of literature searches and prior clinical experience (both recent and past).

PERSONAL PROTECTION

Consult your EHS staff for recommendations
EYE
- Chemical protective goggles with full seal
- Shielded mask (gas-type)
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]

HANDS/FEET
- Elbow length PVC gloves.
- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
 - frequency and duration of contact,
 - chemical resistance of glove material,
 - glove thickness and dexterity
- Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.
- Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
- Rubber gloves (nitrile or low-protein, powder-free latex). Employees allergic to latex gloves should use nitrile gloves in preference.
- Double gloving should be considered.
- PVC gloves.
- Protective shoe covers.
- Head covering.

OTHER
- Employees working with confirmed human carcinogens should be provided with, and be required to wear, clean, full body protective clothing (smocks, coveralls, or long-sleeved shirt and pants), shoe covers and gloves prior to entering the regulated area.
- Employees engaged in handling operations involving carcinogens should be provided with, and required to wear and use half-face filter-type respirators with filters for dusts, mists and fumes, or air purifying canisters or cartridges. A respirator affording higher levels of protection may be substituted.
- Emergency deluge showers and eyewash fountains, supplied with potable water, should be located near, within sight of, and on the same level with locations where direct exposure is likely.
- Prior to each exit from an area containing confirmed human carcinogens, employees should be required to remove and leave protective clothing and equipment at the point of exit and at the last exit of the day, to place used clothing and equipment in impervious containers at the point of exit for purposes of decontamination or disposal. The contents of such impervious containers must be identified with suitable labels. For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood.
- Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood.
- For quantities up to 500 grams a laboratory coat may be suitable.
- For quantities up to 1 kilogram a disposable laboratory coat or coverall of low permeability is recommended. Coveralls should be buttoned at collar and cuffs.
- For quantities over 1 kilogram and manufacturing operations, wear disposable coverall of low permeability and disposable shoe covers.
- For manufacturing operations, air-supplied full body suits may be required for the provision of advanced respiratory protection.
- Eye wash unit.
- Ensure there is ready access to an emergency shower.
- For Emergencies: Vinyl suit
- Handle extremely poisonous natural toxins in closed systems such as glove bags or other enclosures, to avoid accidental contact. Workers should wear complete disposable clothing including shoe covers, gloves and mask with an independent air supply.
- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory . These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

RESPIRATOR

<table>
<thead>
<tr>
<th>Protection Factor</th>
<th>Half-Face Respirator</th>
<th>Full-Face Respirator</th>
<th>Powered Air Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 x PEL</td>
<td>P1</td>
<td>-</td>
<td>PAPR-P1</td>
</tr>
<tr>
<td>50 x PEL</td>
<td>Air-line*</td>
<td>-</td>
<td>PAPR-P2</td>
</tr>
<tr>
<td></td>
<td>Air-line**</td>
<td>P2</td>
<td></td>
</tr>
</tbody>
</table>
100 x PEL - P3 -
100+ x PEL - Air-line* -
* - Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:
Class 1 low to medium absorption capacity filters.
Class 2 medium absorption capacity filters.
Class 3 high absorption capacity filters.
PAPR Powered Air Purifying Respirator (positive pressure) cartridge.
Type A for use against certain organic gases and vapors.
Type AX for use against low boiling point organic compounds (less than 65°C).
Type B for use against certain inorganic gases and other acid gases and vapors.
Type E for use against sulfur dioxide and other acid gases and vapors.
Type K for use against ammonia and organic ammonia derivatives

Solutions Handling:
To prevent contamination and overexposure, no open handling of powder should be allowed.
Powders
■ For potent pharmacological agents:
 - Class P3 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.
 - Class P2 intended for use against all particulates containing highly toxic materials, e.g. beryllium.
 - The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.
 - Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

* ENGINEERING CONTROLS

■ For potent pharmacological agents:
 - Powder handling operations are to be done in a powders weighing hood, a glove box, or other equivalent ventilated containment system.
 - In situations where these ventilated containment hoods have not been installed, a non-ventilated enclosed containment hood should be used.
 - Pending changes resulting from additional air monitoring data, up to 300 mg can be handled outside of an enclosure provided that no grinding, crushing or other dust-generating process occurs.
 - An air-purifying respirator should be worn by all personnel in the immediate area in cases where non-ventilated containment is used, where significant amounts of material (e.g., more than 2 grams) are used, or where the material may become airborne (as through grinding, etc.).
 - Powder should be put into solution or a closed or covered container after handling.
 - If using a ventilated enclosure that has not been validated, wear a half-mask respirator equipped with HEPA cartridges until the enclosure is validated for use.

- Solutions can be handled outside a containment system or without local exhaust ventilation during procedures with no potential for aerosolisation. If the procedures have a potential for aerosolisation, an air-purifying respirator is to be worn by all personnel in the immediate area.
- Solutions used for procedures where aerosolisation may occur (e.g., vortexing, pumping) are to be handled within a containment system or with local exhaust ventilation.
- In situations where this is not feasible (may include animal dosing), an air-purifying respirator is to be worn by all personnel in the immediate area. If using a ventilated enclosure that has not been validated, wear a half-mask respirator equipped with HEPA cartridges until the enclosure is validated for use.
- Ensure gloves are protective against solvents in use.
- Employees exposed to confirmed human carcinogens should be authorized to do so by the employer, and work in a regulated area.
- Work should be undertaken in an isolated system such as a “glove-box”. Employees should wash their hands and arms upon completion of the assigned task and before engaging in other activities not associated with the isolated system.
- Within regulated areas, the carcinogen should be stored in sealed containers, or enclosed in a closed system, including piping systems, with any sample ports or openings closed while the carcinogens are contained within.
- Open-vessel systems are prohibited.
- Each operation should be provided with continuous local exhaust ventilation so that air movement is always from ordinary work areas to the operation.
- Exhaust air should not be discharged to regulated areas, non-regulated areas or the external environment unless decontaminated. Clean make-up air should be introduced in sufficient volume to maintain correct operation of the local exhaust system.
- For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood.
- Except for outdoor systems, regulated areas should be maintained under negative pressure (with respect to non-regulated areas).
- Local exhaust ventilation requires make-up air be supplied in equal volumes to replaced air.
- Laboratory hoods must be designed and maintained so as to draw air inward at an average linear face velocity of 150 feet/ min. with a minimum of 125 feet/ min. Design and construction of the fume hood requires that insertion of any portion of the employees body, other than hands and arms, be disallowed.

Air should be supplied by an independent system.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid.
Does not mix with water.
State	Divided solid	Molecular Weight	403.82
Melting Range (°F) | 336.2 | Viscosity | Not Applicable |
Boiling Range (°F) | Not available | Solubility in water (g/L) | Immiscible |
Flash Point (°F) | Not available | pH (1% solution) | Not applicable |
Decomposition Temp (°F) | Not Available | pH (as supplied) | Not applicable |
Autoignition Temp (°F) | Not available | Vapour Pressure (mmHG) | Negligible |
Upper Explosive Limit (%) | Not available | Specific Gravity (water=1) | Not available |
Lower Explosive Limit (%) | Not available | Relative Vapor Density (air=1) | Not applicable |
Volatile Component (%vol) | Negligible | Evaporation Rate | Not applicable |

APPEARANCE

White powder; does not mix with water. Recrystallised from xylene it forms crystals that emit green (acid solution) and blue (alkaline solution) fluorescence in ultraviolet light. Soluble in polar organic solvents. The sodium salt is water-soluble. Melting point from benzene solutions (one mole of benzene of crystallisation) is quoted as 90 deg C.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

- Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

ochratoxin A

TOXICITY AND IRRITATION

- unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

<table>
<thead>
<tr>
<th>Toxicity</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral (rat) LD50: 20 mg/kg</td>
<td>Nil Reported</td>
</tr>
<tr>
<td>Intrapertitoneal (rat) LD50: 12.6 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Intravenous (rat) LD50: None 12.75 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Oral (mouse) LD50: 46 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Intrapertitoneal (mouse) LD50: 22 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Intravenous (mouse) LD50: 25.7 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Oral (dog) LD50: 0.2 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Oral (pig) LD50: 1 mg/kg</td>
<td></td>
</tr>
</tbody>
</table>

- The substance is classified by IARC as Group 3:
 - NOT classifiable as to its carcinogenicity to humans.
 - Evidence of carcinogenicity may be inadequate or limited in animal testing.
 - Tenth Annual Report on Carcinogens: Substance anticipated to be Carcinogen [National Toxicology Program: U.S. Dep. of Health & Human Services 2002].
 - Exposure to the material for prolonged periods may cause physical defects in the developing embryo (teratogenesis).
 - Effects on fertility, foetal lethality, effects on newborn, foetotoxicity, specific developmental abnormalities (eyes/ears, circulatory system, homeostasis, musculoskeletal, extra-embryonic structures, central nervous system, body wall, gastrointestinal system, urogenital, craniofacial), paternal effects, kidney tumours, liver tumours, chronic pulmonary oedema, altered sleep time, stomach ulceration noted.

CARCINOGEN

<table>
<thead>
<tr>
<th>Ochratoxin A</th>
<th>International Agency for Research on Cancer (IARC) - Agents Reviewed by the IARC Monographs Group</th>
<th>2B</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCHRATOXIN A</td>
<td>US Environmental Defense Scorecard Recognized Carcinogens Reference(s)</td>
<td>P65</td>
</tr>
<tr>
<td>OCHRATOXIN A</td>
<td>US Environmental Defense Scorecard Suspected Carcinogens Reference(s)</td>
<td>P65</td>
</tr>
</tbody>
</table>

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

OCHRATOXIN A:

- Generally, the degradation of ochratoxin was faster in planted soil than in unplanted soil, probably due to higher microbial activity. Due to the fast degradation of ochratoxin in surface soil leaching as soluble substances appears to be limited.
Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions
All waste must be handled in accordance with local, state and federal regulations.
- Puncture containers to prevent re-use and bury at an authorized landfill.
Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.
A Hierarchy of Controls seems to be common - the user should investigate:
- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)
This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.
DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.
- Consult manufacturer for recycling options.
- Consult Waste Management Authority for disposal.
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.
- Puncture containers to prevent re-use and bury at an authorized landfill.

Section 14 - TRANSPORTATION INFORMATION

DOT:
Symbols: None
Hazard class or Division: 6.1
Identification Numbers: UN3462
PG: II
Label Codes: 6.1
Special provisions: 141, IB8, IP2, IP4, T3 TP33
Packaging: Exceptions: None
Packaging: Non-bulk: 212
Packaging: Exceptions: None
Quantity limitations: 25 kg
Quantity Limitations: Cargo aircraft only: 100 kg
Vessel stowage: Location: B
Vessel stowage: Other: None
Hazardous materials descriptions and proper shipping names:
Toxins, extracted from living sources, solid, n.o.s.
Air Transport IATA:
ICAO/IATA Class: 6.1
ICAO/IATA Subrisk: None
UN/ID Number: 3462
Packing Group: II
Special provisions: A3
Shipping Name: TOXINS, EXTRACTED FROM LIVING SOURCES, SOLID, N.O.S. *(CONTAINS OCHRATOXIN A)
Maritime Transport IMDG:
IMDG Class: 6.1
IMDG Subrisk: None
UN Number: 3462
Packing Group: II
EMS Number: F-A,S-A
Special provisions: 210 274
Limited Quantities: 500 g
Shipping Name: TOXINS EXTRACTED FROM LIVING SOURCES, SOLID, N.O.S.(contains ochratoxin A)

Section 15 - REGULATORY INFORMATION

ochratoxin A (CAS: 303-47-9) is found on the following regulatory lists;
Section 16 - OTHER INFORMATION

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEM CALL.

Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Feb-6-2009
Print Date: Apr-21-2010