5-Sulfosalicylic acid dihydrate

sc-202892

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
5-Sulfosalicylic acid dihydrate

STATEMENT OF HAZARDOUS NATURE

SYNONYMS
C7-H6-O6-S.2H2O, C6H3OH(SO2OH)COOH.2H2O, "salicylic acid, 5-sulfo-", "benzoic acid, 2-hydroxy-5-sulpho-, dihydrate", "3-carboxy-4-hydroxybenzenesulfonic acid", "3-carboxy-4-hydroxybenzenesulphonic acid", "2-hydroxybenzoic-5-sulfonic acid", "2-hydroxybenzoic-5-sulphonic acid", "salicylsulfonic acid", "sulphosalicylic acid dihydrate", "5-sulfosalicylic acid dihydrate", A-597

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability:</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Toxicity:</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Body Contact:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Reactivity:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic:</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

CANADIAN WHMIS SYMBOLS

1 of 12
EMERGENCY OVERVIEW

RISK
- Harmful if swallowed.
- Causes burns.
- Risk of serious damage to eyes.
- Cumulative effects may result following exposure*.
 * (limited evidence).

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED
- Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.
- The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion.
- Ingestion of acidic corrosives may produce burns around and in the mouth, the throat and oesophagus. Immediate pain and difficulties in swallowing and speaking may also be evident. Swelling of the epiglottis may make it difficult to breathe which may result in suffocation. More severe exposure may result in vomiting blood and thick mucus, shock, abnormally low blood pressure, fluctuating pulse, shallow respiration and clammy skin, inflammation of stomach wall, and rupture of oesophageal tissue. Untreated shock may eventually result in kidney failure. Severe cases may result in perforation of the stomach and abdominal cavity with consequent infection, rigidity and fever. There may be severe narrowing of the oesophageal or pyloric sphincters; this may occur immediately or after a delay of weeks to years. There may be coma and convulsions, followed by death due to infection of the abdominal cavity, kidneys or lungs.
- High oral doses of salicylates, such as aspirin, may cause a mild burning pain in the throat and stomach, causing vomiting. This is followed (within hours) by deep, rapid breathing, tiredness, nausea and further vomiting, thirst and diarrhoea. The central nervous system is first stimulated, and then depression from failure occurs. Stimulation produces vomiting, hyperventilation, headache, ringing in the ears, confusion, behaviour and mood changes, and generalised convulsions. Respiratory failure and cardiovascular collapse can result in death. There may also be sweating, skin eruptions, internal bleeding, kidney failure and inflamed pancreas. There may be bloody stools, purple skin spots or blood in the vomit. Many of these symptoms are due to disturbances in blood chemistry. A dose of 300 mg/kg can cause serious effects while 500 mg/kg can be lethal.

EYE
- The material can produce chemical burns to the eye following direct contact. Vapours or mists may be extremely irritating.
- If applied to the eyes, this material causes severe eye damage.
- Direct eye contact with acid corrosives may produce pain, tears, sensitivity to light and burns. Mild burns of the epithelia generally recover rapidly and completely. Severe burns produce long-lasting and possibly irreversible damage. The appearance of the burn may not be apparent for several weeks after the initial contact. The cornea may ultimately become deeply opaque resulting in blindness.

SKIN
- The material can produce chemical burns following direct contact with the skin.
- Skin contact is not thought to produce harmful health effects (as classified under EC Directives using animal models). Systemic harm, however, has been identified following exposure of animals by at least one other route and the material may still produce health damage following entry through wounds, lesions or abrasions. Good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.
- Skin contact with acidic corrosives may result in pain and burns; these may be deep with distinct edges and may heal slowly with the formation of scar tissue.
- Solution of material in moisture on the skin, or perspiration, may markedly increase skin corrosion and accelerate tissue destruction.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED
- If inhaled, this material can irritate the throat and lungs of some persons.
- The material is not thought to produce adverse health effects following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.
- If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures.
- Corrosive acids can cause irritation of the respiratory tract, with coughing, choking and mucous membrane damage. There may be dizziness, headache, nausea and weakness. Swelling of the lungs can occur, either immediately or after a delay; symptoms of this include chest tightness, shortness of breath, frothy phlegm and cyanosis. Lack of oxygen can cause death hours after onset.
CHRONIC HEALTH EFFECTS

Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure.

Long term exposure to high dust concentrations may cause changes in lung function, i.e., pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.

Chronic exposure to salicylates produce problems with metabolism, central nervous system disturbances, or kidney damage. Those with pre-existing damage to the eye, skin or kidney are especially at risk. Hypersensitive reactions can occur, especially in people with asthma. These symptoms include itchy wheals and other skin eruptions, an inflamed nose, shortness of breath and serious narrowing of the airways (which can even cause death). Chronic exposure to parabens by skin contact, ingestion or injection can cause hypersensitive reactions. There may be cross-sensitivity between different species, so people can be develop allergic symptoms if they were sensitised by other chemicals. Symptoms include acute narrowing of the airways, hives (itchy wheal), swelling, running nose and blurred vision. There may be anaphylactic shock and rash.

Repeated or prolonged exposure to acids may result in the erosion of teeth, swelling and/or ulceration of mouth lining. Irritation of airways to lung, with cough, and inflammation of lung tissue often occurs. Chronic exposure may inflame the skin or conjunctiva.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>NAME</th>
<th>CAS RN</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-Sulfosalicylic acid dihydrate</td>
<td>5965-83-3</td>
<td>> 99</td>
</tr>
</tbody>
</table>

Section 4 - FIRST AID MEASURES

SWALLOWED
- For advice, contact a Poisons Information Centre or a doctor at once.
- Urgent hospital treatment is likely to be needed.
- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e., becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Transport to hospital or doctor without delay.

EYE

If this product comes in contact with the eyes:
- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

If skin or hair contact occurs:
- Immediately flush body and clothes with large amounts of water, using safety shower if available.
- Quickly remove all contaminated clothing, including footwear.
- Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre.
- Transport to hospital, or doctor.

INHALED

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor.
- Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema.
- Corrosive substances may cause lung damage (e.g., lung oedema, fluid in the lungs).
- As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested.
- Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered.

This must definitely be left to a doctor or person authorised by him/her. (ICSC13719).

NOTES TO PHYSICIAN

- For acute or short term repeated exposures to strong acids:
Renal excretion is the most important route in overdose. Thus when the salicylate co-
Hepatic clearance has zero order kinetics and thus the therapeutic half-life of 2-4.
overdose as does CNS penetration. The extent of protein binding (50-80%) and the rat
Salicylates competitively inhibit vitamin K dependent synthesis of factors II, VII, IX, X and in addition, may produce a mild dose
dependent hepatitis. Salicylates are bound to albumin. The extent of protein binding
potassium depletion occurs as a result of increased renal excretion
subsequently. Hypoglycaemia may occur as a result of increased glucose demand, increased utilisation of glucose. Direct stimulation of the respiratory centre leads
an increased metabolic rate, increased oxygen consumption, increased formation of carbon dioxide, increased heat production and
increased utilisation of glucose. Direct stimulation of the respiratory centre leads to hyperventilation and respiratory alkalosis. This leads
to compensatory increased renal excretion of bicarbonate which contributes to the metabolic acidosis which may coexist or develop
subsequently. Hypoglycaemia may occur as a result of increased glucose demand, increased rates of tissue glycolysis, and impaired
rate of glucose synthesis. NOTE: Tissue glucose levels may be lower than plasma leve
potassium chloride should be included
careful to avoid hypokalaemia. Supplements of potassium chloride should be included
in parenteral fluids.
steroid eye drops should only be administered with the approval of a consulting ophthalmologist).
[Ellenhorn and Barceloux: Medical Toxicology].
for salicylate intoxication:
Pending gastric lavage, use emetics such as syrup of Ipecac or delay gastric emptying and absorption by swallowing a slurry of
activated charcoal. Do not give ipecac after charcoal.
Gastric lavage with water or perhaps sodium bicarbonate solution (3%-5%). Mild alkali delays salicylate absorption from the stomach
and perhaps slightly from the duodenum.
Saline catharsis with sodium or magnesium sulfate (15-30 gm in water).
Take an immediate blood sample for an appraisal of the patient's acid-base status. A pH determination on an anaerobic sample of
arterial blood is best. An analysis of the plasma salicylate concentration should be made at the same time. Laboratory controls are
almost essential for the proper management of severe salicylism.
In the presence of an established acidosis, alkali therapy is essential, but at least in an adult, alkali should be withheld until its need
is demonstrated by chemical analysis. The intensity of treatment depends on the intensity of acidosis. In the presence of vomiting,
intravenous sodium bicarbonate is the most satisfactory of all alkali therapy.
Correct dehydration and hypoglycaemia (if present) by the intravenous administration of glucose in water or in isotonic saline. The
administration of glucose may also serve to remedy ketosis which is often seen in poisoned children.
Even in patients without hypoglycaemia, infusions of glucose adequate to produce distinct hyperglycaemia are recommended to
prevent glucose depletion in the brain. This recommendation is based on impressive experimental data in animals.
Renal function should be supported by correcting dehydration and incipient shock. Overhydration is not justified. An alkaline urine
should be maintained by the administration of alkali if necessary with care to prevent a severe systemic alkalosis. As long as urine
remains alkaline (pH above 7.5), administration of an osmotic diuretic such as mannitol or perhaps THAM is useful, but one must be
careful to avoid hypokalaemia. Supplements of potassium chloride should be included in parenteral fluids.
Small doses of barbiturates, diazepam, paraldehyde, or perhaps other sedatives (but probably not morphine) may be required to
suppress extreme restlessness and convulsions.
For hyperpyrexia, use sponge baths. The presence of petechiae or other signs of haemorrhagic tendency calls for a large Vitamin K dose and perhaps ascorbic acid. Minor
transfusions may be necessary since bleeding in salicylism is not always due to a prothrombin effect.
Haemodialysis and haemoperfusion have proved useful in salicylate poisoning, as have peritoneal dialysis and exchange
transfusions, but alkaline diuretic therapy is probably sufficient except in fulminating cases.
[GOSSELIN, et.al.; Clinical Toxicology of Commercial Products]
The mechanism of the toxic effect involves metabolic acidosis, respiratory alkalosis, hypoglycaemia, and potassium depletion. Salicylate
poisoning is characterised by extreme acid-base disturbances, electrolyte disturbances and decreased levels of consciousness. There
are differences between acute and chronic toxicity and a varying clinical picture which is dependent on the age of the patient and their
kidney function. The major feature of poisoning is metabolic acidosis due to "uncoupling of oxidative phosphorylation" which produces
an increased metabolic rate, increased oxygen consumption, increased formation of carbon dioxide, increased heat production and
increased utilisation of glucose. Direct stimulation of the respiratory centre leads to hyperventilation and respiratory alkalosis. This leads
to compensatory increased renal excretion of bicarbonate which contributes to the metabolic acidosis which may coexist or develop
subsequently. Hypoglycaemia may occur as a result of increased glucose demand, increased rates of tissue glycolysis, and impaired
rate of glucose synthesis. NOTE: Tissue glucose levels may be lower than plasma levels. Hyperglycaemia may occur due to increased
glycogenolysis. Potassium depletion occurs as a result of increased renal excretion as well as intracellular movement of potassium.
Salicylates competitively inhibit vitamin K dependent synthesis of factors II, VII, IX, X and in addition, may produce a mild dose
dependent hepatitis. Salicylates are bound to albumin. The extent of protein binding is concentration dependent (and falls with higher
blood levels). This, and the effects of acidosis, decreasing ionisation, means that the volume of distribution increases markedly in
overdose as does CNS penetration. The extent of protein binding (50-80%) and the rate of metabolism are concentration dependent.
Hepatic clearance has zero order kinetics and thus the therapeutic half-life of 2-4.5 hours but the half-life in overdose is 18-36 hours.
Renal excretion is the most important route in overdose. Thus when the salicylate concentrations are in the toxic range there is
increased tissue distribution and impaired clearance of the drug.
Section 5 - FIRE FIGHTING MEASURES

Vapour Pressure (mmHG): Not applicable.
Upper Explosive Limit (%): Not available.
Specific Gravity (water=1): Not available.
Lower Explosive Limit (%): Not available.

EXTINGUISHING MEDIA

- Water spray or fog.
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.

FIRE FIGHTING

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Use fire fighting procedures suitable for surrounding area.
- Do not approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

When any large container (including road and rail tankers) is involved in a fire, consider evacuation by 800 metres in all directions.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Combustible.
- Slight fire hazard when exposed to heat or flame.
- Acids may react with metals to produce hydrogen, a highly flammable and explosive gas.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- May emit acrid smoke and corrosive fumes.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), sulfur oxides (SOx), other pyrolysis products typical of burning organic material.

Decomposes on heating to produce toxic fumes of phenol and salicylic acid.

FIRE INCOMPATIBILITY

- Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Control personal contact by using protective equipment.
- Use dry clean up procedures and avoid generating dust.
- Place in a suitable, labelled container for waste disposal.
- Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material.
- Check regularly for spills and leaks.

MAJOR SPILLS

- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation (or protect in place).
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labelled containers for recycling.
- Neutralise/decontaminate residue (see Section 13 for specific agent).
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.
PROCEDURE FOR HANDLING
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Avoid contact with moisture.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions)
- Minimise airborne dust and eliminate all ignition sources. Keep away from heat, hot surfaces, sparks, and flame.
- Establish good housekeeping practices.
- Remove dust accumulations on a regular basis by vacuuming or gentle sweeping to avoid creating dust clouds.
- Use continuous suction at points of dust generation to capture and minimise the accumulation of dusts. Particular attention should be given to overhead and hidden horizontal surfaces to minimise the probability of a "secondary" explosion. According to NFPA Standard 654, dust layers 1/32 in (0.8 mm) thick can be sufficient to warrant immediate cleaning of the area.
- Do not use air hoses for cleaning.
- Minimise dry sweeping to avoid generation of dust clouds. Vacuum dust-accumulating surfaces and remove to a chemical disposal area. Vacuums with explosion-proof motors should be used.
- Control sources of static electricity. Dusts or their packages may accumulate static charges, and static discharge can be a source of ignition.
- Solids handling systems must be designed in accordance with applicable standards (e.g. NFPA including 654 and 77) and other national guidance.
- Do not empty directly into flammable solvents or in the presence of flammable vapors.
- The operator, the packaging container and all equipment must be grounded with electrical bonding and grounding systems. Plastic bags and plastics cannot be grounded, and antistatic bags do not completely protect against development of static charges.
- Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.
- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS
- DO NOT use aluminium or galvanised containers
- Check regularly for spills and leaks
- Glass container is suitable for laboratory quantities
- Lined metal can, lined metal pail/can.
- Plastic pail.
- Polyliner drum.
- Packing as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

For low viscosity materials
- Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.

For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.):
- Removable head packaging;
- Cans with friction closures and
- low pressure tubes and cartridges may be used.

Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in contact with inner and outer packages unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

STORAGE REQUIREMENTS
- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
SECTION 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

The following materials had no OELs on our records

- sulfosalicylic acid: **CAS:97-05-2 CAS:5965-83-3**

PERSONAL PROTECTION

RESPIRATOR

EYE
- Chemical goggles.
- Full face shield may be required for supplementary but never for primary protection of eyes
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lenses should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

HANDS/FEET
- Wear chemical protective gloves, eg. PVC.
- Wear safety footwear or safety gumboots, eg. Rubber

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:
- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
gexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

OTHER
- Overalls.
- PVC Apron.
- PVC protective suit may be required if exposure severe.
- Eyewash unit.
- Ensure there is ready access to a safety shower.

ENGINEERING CONTROLS

- Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

- Process controls which involve changing the way a job activity or process is done to reduce the risk.
- Enclosure and/or isolation of emission source which keeps a selected hazard “physically” away from the worker and ventilation that strategically “adds” and “removes” air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.
Employers may need to use multiple types of controls to prevent employee overexposure.

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered.

Such protection might consist of:

(a): particle dust respirators, if necessary, combined with an absorption cartridge;
(b): filter respirators with absorption cartridge or canister of the right type;
(c): fresh-air hoods or masks

- Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant.

<table>
<thead>
<tr>
<th>Type of Contaminant</th>
<th>Air Speed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>direct spray, spray painting in shallow booths, drum</td>
<td>1-2.5 m/s (200-500 f/min.)</td>
</tr>
<tr>
<td>filling, conveyer loading, crusher dusts, gas discharge</td>
<td></td>
</tr>
<tr>
<td>(active generation into zone of rapid air motion)</td>
<td></td>
</tr>
<tr>
<td>grinding, abrasive blasting, tumbling, high speed wheel</td>
<td>2.5-10 m/s (500-2000 f/min.)</td>
</tr>
<tr>
<td>generated dusts (released at high initial velocity into</td>
<td></td>
</tr>
<tr>
<td>zone of very high rapid air motion).</td>
<td></td>
</tr>
</tbody>
</table>

Within each range the appropriate value depends on:

<table>
<thead>
<tr>
<th>Lower end of the range</th>
<th>Upper end of the range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Room air currents minimal or favourable to capture</td>
<td>1: Disturbing room air currents</td>
</tr>
<tr>
<td>2: Contaminants of low toxicity or of nuisance value only</td>
<td>2: Contaminants of high toxicity</td>
</tr>
<tr>
<td>3: Intermittent, low production.</td>
<td>3: High production, heavy use</td>
</tr>
<tr>
<td>4: Large hood or large air mass in motion</td>
<td>4: Small hood-local control only</td>
</tr>
</tbody>
</table>

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 metres distant from the extraction point.

Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid.

Mixes with water.

Corrosive.

Acid.

<table>
<thead>
<tr>
<th>State</th>
<th>Molecular Weight</th>
<th>Melting Range (°F)</th>
<th>Boiling Range (°F)</th>
<th>Flash Point (°F)</th>
<th>Decomposition Temp (°F)</th>
<th>Autoignition Temp (°F)</th>
<th>Upper Explosive Limit (%)</th>
<th>Lower Explosive Limit (%)</th>
<th>Volatile Component (%vol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Divided solid</td>
<td>254.2</td>
<td>230- 235</td>
<td>>248 decomposes</td>
<td>302 ~</td>
<td>>248</td>
<td>Not available.</td>
<td>Not available.</td>
<td>Not available.</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Viscosity</td>
<td></td>
<td></td>
<td>Solubility in water (g/L)</td>
<td>pH (1% solution)</td>
<td>pH (as supplied)</td>
<td>Vapour Pressure (mmHG)</td>
<td>Specific Gravity (water=1)</td>
<td>Relative Vapour Density (air=1)</td>
<td>Evaporation Rate</td>
</tr>
<tr>
<td>Not Applicable</td>
<td></td>
<td></td>
<td>Miscible</td>
<td>0.5 (20%)</td>
<td>Not applicable.</td>
<td>Not applicable.</td>
<td>Not available.</td>
<td>>1</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

APPEARANCE

Crystals or crystalline powder; no odour. May discolor on exposure to light. Very soluble in water and alcohol, soluble in ether. Generally soluble in polar solvents. Anhydrous form melts at approximately 120 deg. C.
Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY
- Contact with alkaline material liberates heat

STORAGE INCOMPATIBILITY
- Avoid strong acids, bases.
- Segregate from alkalies, oxidising agents and chemicals readily decomposed by acids, i.e. cyanides, sulfides, carbonates.
- Reacts with mild steel, galvanised steel / zinc producing hydrogen gas which may form an explosive mixture with air.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

sulfosalicylic acid

TOXICITY AND IRRITATION
SULFOSALICYLIC ACID:
- unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

<table>
<thead>
<tr>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral (rat) LD50: 2450 mg/kg</td>
<td>Nil Reported</td>
</tr>
<tr>
<td>Oral (Rat) LD50: 1850 mg/kg</td>
<td></td>
</tr>
</tbody>
</table>

The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

The material may produce respiratory tract irritation, and result in damage to the lung including reduced lung function.

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

Section 12 - ECOLOGICAL INFORMATION

This material and its container must be disposed of as hazardous waste.

Ecotoxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
<th>Bioaccumulation</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>sulfosalicylic acid</td>
<td>LOW</td>
<td>No Data Available</td>
<td>LOW</td>
<td>HIGH</td>
</tr>
</tbody>
</table>

Section 13 - DISPOSAL CONSIDERATIONS

US EPA Waste Number & Descriptions
A. General Product Information
Corrosivity characteristic: use EPA hazardous waste number D002 (waste code C)

Disposal Instructions
All waste must be handled in accordance with local, state and federal regulations.
- Containers may still present a chemical hazard/ danger when empty.
- Return to supplier for reuse/ recycling if possible.

Otherwise:
- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- Where possible retain label warnings and MSDS and observe all notices pertaining to the product.
Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:
- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. In most instances the supplier of the material should be consulted.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.

Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Treat and neutralise at an approved treatment plant. Treatment should involve: Mixing or slurrying in water; Neutralisation with soda-lime or soda-ash followed by: burial in a land-fill specifically licenced to accept chemical and/or pharmaceutical wastes or Incineration in a licenced apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers with 5% aqueous sodium hydroxide or soda ash, followed by water. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

DOT:

Symbols:	None
Identification Numbers:	UN2585
Hazard class or Division:	8
PG:	III
Label Codes:	8
Special provisions:	IB8, IP3, T1, TP33
Packaging: Exceptions:	154
Packaging: Non-bulk:	213
Packaging: Exceptions:	154
Quantity limitations:	25 kg
Cargo aircraft only:	100 kg
Vessel stowage: Location:	A
Vessel stowage: Other:	None

Hazardous materials descriptions and proper shipping names:

Alkyl sulfonic acids, solid or Aryl sulfonic acids, solid with not more than 5 percent free sulfuric acid

Air Transport IATA:

ICAO/IATA Class:	8
ICAO/IATA Subrisk:	None
UN/ID Number:	2585
Packing Group:	III
Special provisions:	None

Cargo Only

| Packing Instructions: | 864 |
| Maximum Qty/Pack: | 100 kg |

Passenger and Cargo

| Packing Instructions: | 860 |
| Maximum Qty/Pack: | 25 kg |

Limited Quantity

| Packing Instructions: | Y845 |
| Maximum Qty/Pack: | 5 kg |

Shipping name: ALKYL SULPHONIC ACIDS, SOLID or ARYL SULPHONIC ACIDS, SOLID (contains sulfosalicylic acid)

Maritime Transport IMDG:

IMDG Class:	8
IMDG Subrisk:	None
UN Number:	2585
Packing Group:	III
sulfosalicylic acid (CAS: 97-05-2, 5965-83-3) is found on the following regulatory lists:

LIMITED EVIDENCE
- Cumulative effects may result following exposure*.
 * (limited evidence).

Denmark Advisory list for selfclassification of dangerous substances

<table>
<thead>
<tr>
<th>Substance</th>
<th>CAS</th>
<th>Suggested codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>sulfosalicylic acid</td>
<td>97-05-2</td>
<td>Xn; R22 R43</td>
</tr>
<tr>
<td>sulfosalicylic acid</td>
<td>5965-83-3</td>
<td>Xn; R22 R43</td>
</tr>
</tbody>
</table>

Ingredients with multiple CAS Nos

<table>
<thead>
<tr>
<th>Ingredient Name</th>
<th>CAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>sulfosalicylic acid</td>
<td>97-05-2, 5965-83-3</td>
</tr>
</tbody>
</table>

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

For detailed advice on Personal Protective Equipment, refer to the following U.S. Regulations and Standards:

- **OSHA Standards - 29 CFR:**
 - 1910.132 - Personal Protective Equipment - General requirements
 - 1910.133 - Eye and face protection
 - 1910.134 - Respiratory Protection
 - 1910.136 - Occupational foot protection
 - 1910.138 - Hand Protection

Eye and face protection - ANSI Z87.1

Foot protection - ANSI Z41

Respirators must be NIOSH approved.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

www.Chemwatch.net

Issue Date: Apr-1-2009