Ammonium iron(III) sulfate dodecahydrate

sc-202941

Material Safety Data Sheet

The Power to Question

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Ammonium iron(III) sulfate dodecahydrate

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA FLAM () BILITY HEALTH AZARD INST (B) LITY

SUPPLIER

Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800

EMERGENCY

ChemWatch

Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS

FeH4NO8S2•12H2O, Fe-H4-N-O8-S2, NH4Fe(SO4)2.12H2O, "ferric ammonium sulfate", "diammonium iron (III) sulfate", "ferric alum", "-the dodecahydrate", "iron alum dodecahydrate", "ammonium iron (III) sulfate", "sulfuric acid, ammonium iron (3+) salt (2:1:1)"

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

		Min	Max
Flammability:	0		
Toxicity:	2		
Body Contact:	2		Min/Nil=0 Low=1
Reactivity:	0		Moderate=2
Chronic:	2		High=3 Extreme=4

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

Irritating to eyes, respiratory system and skin. Ingestion may produce health damage*. Cumulative effects may result following exposure*. * (limited evidence).

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

- Accidental ingestion of the material may be damaging to the health of the individual.
- Sulfates are not well absorbed orally, but can cause diarrhoea.
- Iron poisoning results in pain in the upper abdomen and vomiting, and is followed hours later by shock, in severe cases coma and death. Iron toxicity increases in proportion to their solubility in the gastrointestinal tract. There is often vomiting of blood due to dilation of capillaries and bleeding from the walls of the gastrointestinal system. A watery diarrhoea can occur, often leading to cardiovascular collapse after fluid and mineral loss and there can be a relapse marked by profound metabolic acidosis after several hours of apparent recovery. There may also be liver damage. Symptoms of poisoning include metallic taste, restlessness, lethargy, loss of muscle tone, coma, pallor or cyanosis (blue-grey skin), fast and weak pulse, low blood pressure, hyperventilation, shock, vasomotor instability and cardiovascular collapse. There may be inflammation, swelling and bleeding from the lungs, convulsions, jaundice, low blood sugar, multiple blood clotting defects, kidney damage with absence of urine, damage to the pancreas, vascular damage, blood loss, shock and vascular collapse. Survivors can display stomach scarring, obstruction or narrowing of digestive tract sphincters, liver hardening or nervous system effects.
- Large doses of ammonia or injected ammonium salts may produce diarrhoea and may be sufficiently absorbed to produce increased production of urine and systemic poisoning. Symptoms include weakening of facial muscle, tremor, anxiety, reduced muscle and limb control.

EYE

■ This material can cause eye irritation and damage in some persons.

SKIN

- This material can cause inflammation of the skin oncontact in some persons.
- The material may accentuate any pre-existing dermatitis condition.
- Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

- The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures.

■ Not normally a hazard due to non-volatile nature of product.

CHRONIC HEALTH EFFECTS

■ Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.

Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure.

Overexposure to respirable dust may cause coughing, wheezing, difficulty in breathing and impaired lung function. Chronic symptoms may include decreased vital lung capacity, chest infections

Repeated exposures, in an occupational setting, to high levels of fine- divided dusts may produce a condition known as pneumoconiosis which is the lodgement of any inhaled dusts in the lung irrespective of the effect. This is particularly true when a significant number of particles less than 0.5 microns (1/50,000 inch), are present. Lung shadows are seen in the X-ray. Symptoms of pneumoconiosis may include a progressive dry cough, shortness of breath on exertion (exertional dyspnea), increased chest expansion, weakness and weight loss. As the disease progresses the cough produces a stringy mucous, vital capacity decreases further and shortness of breath becomes more severe. Other signs or symptoms include altered breath sounds, diminished lung capacity, diminished oxygen uptake during exercise, emphysema and pneumothorax (air in lung cavity) as a rare complication.

Removing workers from possibility of further exposure to dust generally leads to halting the progress of the lung abnormalities. Where worker-exposure potential is high, periodic examinations with emphasis on lung dysfunctions should be undertaken

Dust inhalation over an extended number of years may produce pneumoconiosis. Pneumoconiosis is the accumulation of dusts in the

lungs and the tissue reaction in its presence. It is further classified as being of noncollagenous or collagenous types. Noncollagenous pneumoconiosis, the benign form, is identified by minimal stromal reaction, consists mainly of reticulin fibres, an intact alveolar architecture and is potentially reversible.

Chronic excessive intake of iron have been associated with damage to the liver and pancreas. People with a genetic disposition to poor control over iron are at an increased risk. Iron overload in men may lead to diabetes, joint inflammation, liver cancer, heart irregularities and problems with other organs.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS					
NAME	CAS RN	%			
Ammonium iron(III) sulfate dodecahydrate	7783-83-7	100			

Section 4 - FIRST AID MEASURES

SWALLOWED

- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Seek medical advice.

EYE

If this product comes in contact with the eyes:

- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Seek medical attention without delay; if pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

If skin contact occurs:

- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

INHALED

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.

NOTES TO PHYSICIAN

- For acute or short term repeated exposures to iron and its derivatives:
- Always treat symptoms rather than history.
- In general, however, toxic doses exceed 20 mg/kg of ingested material (as elemental iron) with lethal doses exceeding 180 mg/kg.
- Control of iron stores depend on variation in absorption rather than excretion. Absorption occurs through aspiration, ingestion and burned skin.
- Hepatic damage may progress to failure with hypoprothrombinaemia and hypoglycaemia. Hepatorenal syndrome may occur.
- Iron intoxication may also result in decreased cardiac output and increased cardiac pooling which subsequently produces hypotension.
- Serum iron should be analysed in symptomatic patients. Serum iron levels (2-4 hrs post-ingestion) greater that 100 ug/dL indicate
 poisoning with levels, in excess of 350 ug/dL, being potentially serious. Emesis or lavage (for obtunded patients with no gag
 reflex)are the usual means of decontamination.
- Activated charcoal does not effectively bind iron.
- Catharsis (using sodium sulfate or magnesium sulfate) may only be used if the patient already has diarrhoea.
- Deferoxamine is a specific chelator of ferric (3+) iron and is currently the antidote of choice. It should be administered parenterally.
 [Ellenhorn and Barceloux: Medical Toxicology]

Section 5 - FIRE FIGHTING MEASURES

Vapour Pressure (mmHG):	Negligible	
Upper Explosive Limit (%):	Not applicable	
Specific Gravity (water=1):	1.71	
Lower Explosive Limit (%):	Not applicable	

EXTINGUISHING MEDIA

- There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

FIRE FIGHTING

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves for fire only.
- Prevent, by any means available, spillage from entering drains or water courses.
- Use fire fighting procedures suitable for surrounding area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

Decomposition may produce toxic fumes of: nitrogen oxides (NOx), sulfur oxides (SOx), metal oxides.

May emit poisonous fumes.

May emit corrosive fumes.

- Non combustible.
- Not considered a significant fire risk, however containers may burn.

FIRE INCOMPATIBILITY

None known.

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Control personal contact by using protective equipment.
- Use dry clean up procedures and avoid generating dust.
- Place in a suitable, labelled container for waste disposal.

MAJOR SPILLS

Moderate hazard.

- CAUTION: Advise personnel in area.
- Alert Emergency Services and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise Emergency Services.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.

- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

RECOMMENDED STORAGE METHODS

- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry area protected from environmental extremes.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations

For major quantities:

- Consider storage in bunded areas ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and streams).
- Ensure that accidental discharge to air or water is the subject of a contingency disaster management plan; this may require consultation with local authorities.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m³	STEL ppm	STEL mg/m³	Peak ppm	TWA F/CC	Notes
US ACGIH Threshold Limit Values (TLV)	ammonium ferric sulfate (Iron salts, soluble, as Fe)		1					TLV® Basis: URT & skin irr

PERSONAL PROTECTION

RESPIRATOR

Particulate. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

EYE

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

HANDS/FEET

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- nitrile rubber
- butyl rubber
- fluorocaoutchouc
- polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

ENGINEERING CONTROLS

■ Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a
 certain proportion will be powdered by mutual friction.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of:
- (a): particle dust respirators, if necessary, combined with an absorption cartridge;
- (b): filter respirators with absorption cartridge or canister of the right type;
- (c): fresh-air hoods or masks.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:			
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)			
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)			
Within each range the appropriate value depends on:				
Lower end of the range	Upper end of the range			
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents			
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity			
3: Intermittent, low production.	3: High production, heavy use			
4: Large hood or large air mass in motion	4: Small hood-local control only			
Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction nine. Velocity generally				

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 metres distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid

Mixes with water.

State	Divided solid	Molecular Weight	482.19
Melting Range (°F)	99(.12H2O)	Viscosity	Not Applicable
Boiling Range (°F)	Not available	Solubility in water (g/L)	Miscible
Flash Point (°F)	Not applicable	pH (1% solution)	2.5 (0.1 M)
Decomposition Temp (°F)	Not available	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available	Vapour Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not applicable	Specific Gravity (water=1)	1.71
Lower Explosive Limit (%)	Not applicable	Relative Vapour Density (air=1)	Not applicable
Volatile Component (%vol)	Negligible	Evaporation Rate	Not available

APPEARANCE

Crystals with acid styptic taste; mix with water.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerisation will not occur.

STORAGE INCOMPATIBILITY

- Derivative of electropositive metal.
- WARNING: Avoid or control reaction with peroxides. All transition metal peroxides should be considered as potentially explosive. For example transition metal complexes of alkyl hydroperoxides may decompose explosively.
- The pi-complexes formed between chromium(0), vanadium(0) and other transition metals (haloarene-metal complexes) and mono-or
 poly-fluorobenzene show extreme sensitivity to heat and are explosive.
- Avoid reaction with borohydrides or cyanoborohydrides
- Metals and their oxides or salts may react violently with chlorine trifluoride and bromine trifluoride.
- These trifluorides are hypergolic oxidisers. They ignites on contact (without external source of heat or ignition) with recognised fuels contact with these materials, following an ambient or slightly elevated temperature, is often violent and may produce ignition.
- The state of subdivision may affect the results.
- Avoid strong acids, bases.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

ammonium ferric sulfate

TOXICITY AND IRRITATION

AMMONIUM FERRIC SULFATE:

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY IRRITATION

Oral (Rat) LD50: 3250 mg/kg

■ Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

CARCINOGEN

ammonium ferric sulfate US - Rhode Island Hazardous Substance List IARC

Section 12 - ECOLOGICAL INFORMATION

No data

Ecotoxicity

Ingredient	Persistence: Water/Soil	Persistence: Air	Bioaccumulation	Mobility
ammonium ferric sulfate	HIGH	No Data Available	LOW	HIGH

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. In most instances the supplier of the material should be consulted.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Management Authority for disposal.
- Bury residue in an authorised landfill.
- Recycle containers if possible, or dispose of in an authorised landfill.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

ammonium ferric sulfate (CAS: 10138-04-2, 7783-83-7, 7783-85-9) is found on the following regulatory lists;

"Canada - Alberta Occupational Exposure Limits", "Canada - British Columbia Occupational Exposure Limits", "Canada - Northwest Territories Occupational Exposure Limits (English)", "Canada - Nova Scotia Occupational Exposure Limits", "Canada - Prince Edward Island Occupational Exposure Limits", "Canada - Quebec Permissible Exposure Values for Airborne Contaminants (English)", "Canada - Saskatchewan Occupational Health and Safety Regulations - Contamination Limits", "Canada - Yukon Permissible Concentrations for Airborne Contaminant Substances", "Canada CEPA Environmental Registry Substance Lists - List of substances on the DSL that are Inherently Toxic to the Environment (English)", "Canada CEPA Environmental Registry Substance Lists - List of substances on the DSL that are Persistent and Inherently Toxic to the Environment (PiT) (English)", "Canada CEPA Environmental Registry Substance Lists - List of substances on the DSL that are Persistent and Inherently Toxic to the Environment (PiT) (English)", "Canada CEPA Environmental Registry Substance Lists - List of substances on the DSL that meet the ecological criteria for categorization (English)", "Canada Domestic Substances List (DSL)", "Canada Ingredient Disclosure List (SOR/88-64)", "Canada Toxicological Index Service - Workplace Hazardous Materials (DSL)", "Canada System - WHMIS (English)", "US - Alaska Limits for Air Contaminants", "US - California Occupational Safety and Health Regulations (CAL/OSHA) - Hazardous Substances List", "US - California Permissible Exposure Limits for Chemical Contaminants", "US - Michigan Exposure Limits for Air Contaminants", "US - Michigan Exposure Limits for Air Contaminants", "US - Michigan Exposure Limits for Air Contaminants", "US - North Dakota Air Pollutants - Guideline Concentrations", "US - Oregon Permissible Exposure Limits (Z-1)", "US - Rhode Island Hazardous Substance List", "US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants", "US - Vermont Permissible Exposure Limits Table Z-1-A Final

Rule Limits for Air Contaminants", "US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants", "US - Washington Permissible exposure limits of air contaminants", "US - Wisconsin Control of Hazardous Pollutants - Emission Thresholds, Standards and Control Requirements (Hazardous Air Contaminants)", "US ACGIH Threshold Limit Values (TLV)", "US DOE Temporary Emergency Exposure Limits (TEELs)", "US FDA Everything Added to Food in the United States (EAFUS)", "US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Ingestion may produce health damage*.
- Cumulative effects may result following exposure*.
- * (limited evidence).

Ingredients with multiple CAS Nos

Ingredient Name CAS

ammonium ferric sulfate 10138-04-2, 7783-83-7, 7783-85-9

- Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.
- For detailed advice on Personal Protective Equipment, refer to the following U.S. Regulations and Standards:

OSHA Standards - 29 CFR:

1910.132 - Personal Protective Equipment - General requirements

1910.133 - Eye and face protection

1910.134 - Respiratory Protection

1910.136 - Occupational foot protection

1910.138 - Hand Protection

Eve and face protection - ANSI Z87.1

Foot protection - ANSI Z41

Respirators must be NIOSH approved.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700. www.Chemwatch.net

Issue Date: Dec-24-2010 Print Date:Mar-29-2012