
Dequalinium Chloride

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME Dequalinium Chloride

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

SUPPLIER

Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800 **EMERGENCY:** ChemWatch Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS

C30-H40-Cl2-N4, "quinaldinium, 1, 1' -decamethylenebis(4-amino-, dichloride", "BAQD 10", "decamethylenebis(4-aminoquinaldinium chloride)", "1, 1' -decamethylenebis(4-aminoquinaldinium chloride)", "1, 10-decamethylenebis(4-aminoquinaldinium chloride)", "2, 20-decamethylenebis(4-aminoquinaldinium chloride)", 20-decamethylenebis(4-aminoquinaldinium chloride), 20-decamethylene

Section 2 - HAZARDS IDENTIFICATION **CHEMWATCH HAZARD RATINGS** Min Max Flammability: 1 2 Toxicity: Min/Nil=0 Body Contact: 3 low=1 Reactivity: 1 Moderate=2 High=3 Chronic: 2 Extreme=4

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

RISK

Harmful if swallowed. May cause SENSITISATION by skin contact. Irritating to eyes, respiratory system and skin. Toxic to aquatic organisms.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.

Concentrated solutions of many cationics may cause corrosive damage to mucous membranes and the esophagus.

Nausea and vomiting (sometimes bloody) may follow ingestion.

EYE

■ This material can cause eye irritation and damage in some persons.

■ If applied to the eyes, this material causes severe eye damage.

SKIN

■ This material can cause inflammation of the skin oncontact in some persons.

■ The material may accentuate any pre-existing dermatitis condition.

Open cuts, abraded or irritated skin should not be exposed to this material.

Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects.

Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

The material can cause respiratory irritation in some persons.

The body's response to such irritation can cause further lung damage.

■ Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS

■ Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.

Skin contact with the material is more likely to cause a sensitization reaction in some persons compared to the general population.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

There is some evidence that inhaling this product is more likely to cause a sensitization reaction in some persons compared to the general population.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung.

Prolonged or repeated skin contact may cause degreasing with drying, cracking and dermatitis following.

Respiratory sensitization may result in allergic/asthma like responses; from coughing and minor breathing difficulties to bronchitis with wheezing, gasping.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS					
%					
>98					
	>98				

Section 4 - FIRST AID MEASURES

SWALLOWED

· IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY. · Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:

EYE

■ If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the

upper and lower lids.

SKIN

■ If skin contact occurs: Immediately remove all contaminated clothing, including footwear · Flush skin and hair with running water (and soap if available).

INHALED

· If fumes or combustion products are inhaled remove from contaminated area. · Lay patient down. Keep warm and rested.

NOTES TO PHYSICIAN

Treat symptomatically.

For exposures to quaternary ammonium compounds;

• For ingestion of concentrated solutions (10% or higher): Swallow promptly a large quantity of milk, egg whites / gelatin solution. If not readily available, a slurry of activated charcoal may be useful. Avoid alcohol. Because of probable mucosal damage omit gastric lavage and emetic drugs.

· For dilute solutions (2% or less): If little or no emesis appears spontaneously, administer syrup of Ipecac or perform gastric lavage.

Section 5 - FIRE FIGHTING MEASURES

Vapour Pressure (mmHG):	Negligible
Upper Explosive Limit (%):	Not available.
Specific Gravity (water=1):	Not available
Lower Explosive Limit (%):	Not available

EXTINGUISHING MEDIA

· Foam.

· Dry chemical powder.

FIRE FIGHTING

· Alert Emergency Responders and tell them location and nature of hazard.

· Wear breathing apparatus plus protective gloves.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

· Combustible solid which burns but propagates flame with difficulty.

• Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), hydrogen chloride, phosgene, nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

May emit corrosive fumes.

FIRE INCOMPATIBILITY

Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses: Chemical goggles. Gloves: Respirator: Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- \cdot Clean up waste regularly and abnormal spills immediately.
- · Avoid breathing dust and contact with skin and eyes.
- \cdot Wear protective clothing, gloves, safety glasses and dust respirator.
- · Use dry clean up procedures and avoid generating dust.
- Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- · Dampen with water to prevent dusting before sweeping.
- · Place in suitable containers for disposal.

MAJOR SPILLS

Moderate hazard.

- · CAUTION: Advise personnel in area.
- · Alert Emergency Responders and tell them location and nature of hazard.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

· Avoid all personal contact, including inhalation.

 \cdot Wear protective clothing when risk of exposure occurs.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

· Do NOT cut, drill, grind or weld such containers.

· In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

Glass container.

- \cdot Polyethylene or polypropylene container.
- · Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

· Store in original containers.

· Keep containers securely sealed.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m³	STEL ppm	STEL mg/m³	Peak ppm	Peak mg/m³	TWA F/CC	Notes
Canada - British Columbia Occupational Exposure Limits	dequalinium chloride (Particles (Insoluble or Poorly Soluble) Not Otherwise Classified (PNOC))		10 (N)						
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	dequalinium chloride (Particulates not otherwise regulated (PNOR)(f)- Respirable fraction)		5						
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	dequalinium chloride (Particulates not otherwise regulated Respirable fraction)		5						
US - California Permissible Exposure Limits for Chemical Contaminants	dequalinium chloride (Particulates not otherwise regulated Respirable fraction)		5						(n)
US - Oregon Permissible Exposure Limits (Z-1)	dequalinium chloride (Particulates not otherwise regulated (PNOR) (f) Total Dust)	-	10						Bold print identifies substances for which the Oregon Permissible Exposure Limits (PELs) are different than the federal Limits. PNOR means

			"particles not otherwise regulated."
US - Michigan Exposure Limits for Air Contaminants	dequalinium chloride (Particulates not otherwise regulated, Respirable dust)	5	
Canada - Prince Edward Island Occupational Exposure Limits	dequalinium chloride (Particles (Insoluble or Poorly Soluble) [NOS] Inhalable particles)	10	See Appendix B current TLV/BEI Book
US - Oregon Permissible Exposure Limits (Z-1)	dequalinium chloride (Particulates not otherwise regulated (PNOR) (f) Respirable Fraction)	5	Bold print identifies substances for which the Oregon Permissible Exposure Limits (PELs) are different than the federal Limits. PNOR means "particles not

otherwise regulated."

ENDOELTABLE

RESPIRATOR

Particulate

Consult your EHS staff for recommendations

EYE

■ When handling very small quantities of the material eye protection may not be required.

For laboratory, larger scale or bulk handling or where regular exposure in an occupational setting occurs:

· Chemical goggles

· Face shield. Full face shield may be required for supplementary but never for primary protection of eyes

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59].

HANDS/FEET

■ NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- · frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and
- · dexterity
- Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

· When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater

than 240 minutes according to EN 374) is recommended.

When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.

· Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- · Rubber gloves (nitrile or low-protein, powder-free latex). Employees allergic to latex gloves should use nitrile gloves in preference.
- Double gloving should be considered.
- · PVC gloves.
- · Protective shoe covers.
- · Head covering.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- · nitrile rubber
- · butyl rubber
- · fluorocaoutchouc
- · polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

· For quantities up to 500 grams a laboratory coat may be suitable.

· For quantities up to 1 kilogram a disposable laboratory coat or coverall of low permeability is recommended. Coveralls should be buttoned at collar and cuffs.

· For quantities over 1 kilogram and manufacturing operations, wear disposable coverall of low permeability and disposable shoe covers.

- · For manufacturing operations, air-supplied full body suits may be required for the provision of advanced respiratory protection.
- · Eve wash unit.
- · Ensure there is ready access to an emergency shower.
- · For Emergencies: Vinyl suit.

ENGINEERING CONTROLS

Enclosed local exhaust ventilation is required at points of dust, fume or vapor generation.

HEPA terminated local exhaust ventilation should be considered at point of generation of dust, fumes or vapors.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid. Does not mix with water.			
State	Divided solid	Molecular Weight	527.59
Melting Range (°F)	619(decomposes)	Viscosity	Not Applicable
Boiling Range (°F)	Not applicable	Solubility in water (g/L)	Partly miscible
Flash Point (°F)	Not available	pH (1% solution)	Not applicable
Decomposition Temp (°F)	619	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available	Vapour Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not available.	Specific Gravity (water=1)	Not available
Lower Explosive Limit (%)	Not available	Relative Vapor Density (air=1)	Not Applicable
Volatile Component (%vol)	Negligible	Evaporation Rate	Not applicable

APPEARANCE

Creamy-white, odourless powder with bitter taste; does not mix well with water (1:200).

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- · Presence of incompatible materials.
- Product is considered stable.

STORAGE INCOMPATIBILITY

Avoid reaction with oxidizing agents. Incompatible with soaps and other anionic surfactants.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

dequalinium chloride

TOXICITY AND IRRITATION

DEQUALINIUM CHLORIDE:

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY IRRITATION

Subcutaneous (mouse) LD50: 70 mg/kg Nil Reported

Intravenous (mouse) LD50: 1.9 mg/kg

■ Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's edema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type.

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

Most undiluted cationic surfactants satisfy the criteria for classification as Harmful (Xn) with R22 and as Irritant (Xi) for skin and eyes with R38 and R41.

For quaternary ammonium compounds (QACs):

Quaternary ammonium compounds (QACs) are cationic surfactants. They are synthetic organically tetra-substituted ammonium compounds, where the R substituents are alkyl or heterocyclic radicals. A common characteristic of these synthetic compounds is that one of the R's is a long-chain hydrophobic aliphatic residue

The cationic surface active compounds are in general more toxic than the anionic and non-ionic surfactants. The positively-charged cationic portion is the functional part of the molecule and the local irritation effects of QACs appear to result from the quaternary ammonium cation.

Due to their relative ability to solubilise phospholipids and cholesterol in lipid membranes, QACs affect cell permeability which may lead to cell death. Further QACs denature proteins as cationic materials precipitate protein and are accompanied by generalised tissue irritation.

It has been suggested that the experimentally determined decrease in acute toxicity of QACs with chain lengths above C16 is due to decreased water solubility.

In general it appears that QACs with a single long-chain alkyl groups are more toxic and irritating than those with two such substitutions, The straight chain aliphatic QACs have been shown to release histamine from minced guinea pig lung tissue However, studies with benzalkonium chloride have shown that the effect on histamine release depends on the concentration of the solution. When cell suspensions (11% mast cells) from rats were exposed to low concentrations, a decrease in histamine release was seen. When exposed to high concentrations the opposite result was obtained.

In addition, QACs may show curare-like properties (specifically benzalkonium and cetylpyridinium derivatives, a muscular paralysis with no involvement of the central nervous system. This is most often associated with lethal doses Parenteral injections in rats, rabbits and dogs have resulted in prompt but transient limb paralysis and sometimes fatal paresis of the respiratory muscles. This effect seems to be transient.

From human testing of different QACs the generalised conclusion is obtained that all the compounds investigated to date exhibit similar toxicological properties.

Acute toxicity: Studies in rats have indicated poor intestinal absorption of QACs. Acute toxicity of QACs varies with the compound and, especially, the route of administration. For some substances the LD50 value is several hundreds times lower by the i.p. or i.v. than the oral route, whereas toxicities between the congeners only differ in the range of two to five times.

At least some QACs are significantly more toxic in 50% dimethyl sulfoxide than in plain water when given orally

Probably all common QAC derivatives produce similar toxic reactions, but as tested in laboratory animals the oral mean lethal dose varies with the compound .

Oral toxicity: LD50 values for QACs have been reported within the range of 250-1000 mg/kg for rats, 150-1000 mg/kg for mice, 150-300 mg/kg for guinea pigs and about 500 mg/kg b.w. for rabbits and dogs. The ranges observed reflect differences in the study designs of these rather old experiments as well as differences between the various QACs.

The oral route of administration was characterised by delayed deaths, gastrointestinal lesions and respiratory and central nervous system depression. It was also found that given into a full stomach, the QACs lead to lower mortality and fewer gastrointestinal symptoms. This support the suggestion of an irritating effect

Dermal toxicity: It has been concluded that the maximum concentration that did not produce irritating effect on intact skin is 0.1%. Irritation became manifest in the 1-10% range. Concentrations below 0.1% have caused irritation in persons with contact dermatitis or broken skin.

Although the absorption of QACs through normal skin probably is of less importance than by other routes, studies with excised guinea pig skin have shown that the permeability constants strongly depends on the exposure time and type of skin

Sensitisation: Topical mucosal application of QACs may produce sensitisation. Reports on case stories and patch test have shown that compounds such as benzalkonium chloride, cetalkonium chloride and cetrimide may possibly act as sensitisers. However, in general it is suggested that QACs have a low potential for sensitising man It is difficult to distinguish between an allergic and an irritative skin

reaction due to the inherent skin irritating effect of QACs.

Long term/repeated exposure:

Inhalation: A group of 196 farmers (with or without respiratory symptoms) were evaluated for the relationship between exposure to QACs (unspecified, exposure levels not given) and respiratory disorders by testing for lung function and bronchial responsiveness to histamine. After histamine provocation statistically significant associations were found between the prevalence of mild bronchial responsiveness (including asthma-like symptoms) and the use of QACs as disinfectant. The association seems even stronger in people without respiratory symptoms.

Genetic toxicity: QACs have been investigated for mutagenicity in microbial test systems. In Ames tests using Salmonella typhimurium with and without metabolic activation no signs of mutagenicity has been observed. Negative results were also obtained in E. coli reversion and B. subtilis rec assays. However, for benzalkonium chloride also positive and equivocal results were seen in the B. subtilis rec assays.

For dequalinium salts and derivatives

Dequalinium a cationic, lipophilic mitochondrial poison, selectively targets the mitochondrial membrane of certain epithelial carcinoma cells, in which it inhibits cellular energy production. It has demonstrated potency as a cytotoxic agent specific for carcinoma.

Single ip doses of 20 and 25 mg/kg of dequalinium chloride (DECA) in BALB/c mice produced > 50% mortality. Histologic examination of the tissues revealed significant damage to the liver and kidneys, with pulmonary congestion occurring secondary to renal-hepatic failure. A cumulative assessment revealed that 60% of the animals tolerated 15 doses of 6 and 7 mg/kg QOD and that 100% tolerated 5 doses of 11 and 12 mg/kg (every 7 days). Higher DECA doses under either regimen induced severe toxic effects and mortality.

Dequalinium chloride has produced skin irritation, ulceration and sensitisation in humans. It was not mutagenic in an Ames bacterial test Amyloid fibril formation of amyloid beta/A4 protein (Abeta) is critical to understand the pathological mechanism of Alzheimer's disease and develop controlling strategy toward the neurodegenerative disease. For this purpose, dequalinium (DQ) has been employed as a specific modifier for Abeta aggregation and its subsequent cytotoxicity. In the presence of DQ, the final thioflavin-T binding fluorescence of Abeta aggregates decreased significantly. It was the altered morphology of Abeta aggregates in a form of the bundles of the fibrils, distinctive from normal single-stranded amyloid fibrils, and the resulting reduced beta-sheet content that were responsible for the decreased fluorescence. The morphological transition of Abeta aggregates assessed with atomic force microscope indicated that the bundle structure observed with DQ appeared to be resulted from the initial multimeric seed structure rather than lateral association of preformed single-stranded fibrils. Investigation of the seeding effect of the DQ-induced Abeta aggregates. Taken together, DQ has been considered to be a useful chemical probe to control the cytotoxicity of the amyloid fibrils by influencing the seed structures which turned out to be central to develop therapeutic strategy by inducing the amyloid fibrils in different shapes with varied toxicities. Respiratory tract changes recorded.

Section 12 - ECOLOGICAL INFORMATION

Toxic to aquatic organisms.

Ecotoxicity				
Ingredient	Persistence: Water/Soil	Persistence: Air	Bioaccumulation	Mobility
dequalinium chloride	HIGH		LOW	LOW

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- · Reduction
- · Reuse
- Recycling
- · Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

· Recycle wherever possible.

· Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

dequalinium chloride (CAS: 522-51-0) is found on the following regulatory lists;

"Canada - British Columbia Occupational Exposure Limits", "Canada - Prince Edward Island Occupational Exposure Limits", "Canada National Pollutant Release Inventory (NPRI)", "US - California Permissible Exposure Limits for Chemical Contaminants", "US - Michigan Exposure Limits for Air Contaminants", "US - Oregon Permissible Exposure Limits (Z-1)", "US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants", "US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants"

Section 16 - OTHER INFORMATION

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

■ The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Jan-22-2010 Print Date:Mar-29-2011