sc-203274

Material Safety Data Sheet

The Power to Question

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Sodium Chloride

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA

SUPPLIER

Company: Santa Cruz Biotechnology, Inc.

Address:

2145 Delaware Ave Santa Cruz, CA 95060

Telephone: 800.457.3801 or 831.457.3800

Emergency Tel: CHEMWATCH: From within the US and Canada:

877-715-9305

Emergency Tel: From outside the US and Canada: +800 2436 2255

(1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

As a source of chlorine and sodium. In the curing of hides; in glazing of pottery; in metallurgy. Preservative for a wide range of packaged foods. Minor use as household food seasoning. Laboratory reagent.

SYNONYMS

NaCl, "common salt", halite, rocksalt, "rock salt", "sea salt", saline, salt, "Saxa table salt", "dendritis white crystal", "Natrii chloridum", "solar salt", "vacuum salt", "PDV salt", "butter salt", "Merck 10241", "Sigma S9625", APS, "Chem-Supply sodium chloride", "LR SL046", "BP SP046", "AR SA046", "Selby sodium chloride", "Pronalys BSPSL944", "TG ST046", "FG SP046", "Salt water softener granular sodium ST180", "All Purpose Purex Salt", "Canning and Pickling Salt", "Cliniox 999 Chemical Grade Salt", "Culinox 999 Food Grade Salt", "Evaporated Granulated Salt", "Fine Mixing Salt", "H.G. Blending Salt", "Industrial Grade Solar Salt", "Kleer Fine Salt", "Kleer Granulated Salt", "Mill Run Salt", "Purex Salt", "Purex Select Salt", "Reagent Grade sodium chloride", "Refined Sea Salt", "Rock Pretzel Salt", "Rock Salt for making Ice Cream", Safe-T-Salt, "Sevice Pack Salt", "Ship n' Store Rock Salt", "USP sodium chloride", "Waterco Free Style Pool Salt", "White Crystal Rock salt", "White Crystal Solar Salt", "White Crystals Water Softening Solar Salt"

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

sc-203274

Material Safety Data Sheet

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

EMERGENCY OVERVIEW RISK

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

- Although ingestion is not thought to produce harmful effects, the material may still be damaging to the health of the individual following ingestion, especially where pre-existing organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality (death) rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.
- Use in food, and as food additive indicates high degree of tolerance.

FYF

■ There is some evidence to suggest that this material can causeeye irritation and damage in some persons.

SKIN

- Skin contact is not thought to have harmful health effects, however the material may still produce health damage following entry through wounds, lesions or abrasions.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Contact with cuts, abraded skin is painful, but this is transient.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.
- There is some evidence to suggest that this material can cause inflammation of the skin on contact in some persons.

INHALED

- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.
- Not normally a hazard due to non-volatile nature of product.
- There is some evidence to suggest that this material, if inhaled, can irritate the throat and lungs of some persons.

CHRONIC HEALTH EFFECTS

■ Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

		Min	Max
Flammability:	0		
Toxicity:	0		
Body Contact:	2		Min/Nil=0 Low=1
Reactivity:	0		Moderate=2
Chronic:	2		High=3 Extreme=4

 NAME
 CAS RN
 %

 sodium chloride
 7647-14-5
 >99

Section 4 - FIRST AID MEASURES

SWALLOWED

- •
- Immediately give a glass of water.

sc-203274

Material Safety Data Sheet

Hazard Alert Code Key:	EXTREME	HIGH	MODERATE	LOW	l

• First aid is not generally required. If in doubt, contact a Poisons Information Center or a doctor.

FYF

- If this product comes in contact with the eyes:
- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- If pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin contact occurs:
- Immediately remove all contaminated clothing, including footwear
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

INHALED

- If fumes or combustion products are inhaled remove from contaminated area.
- Other measures are usually unnecessary.

NOTES TO PHYSICIAN

■ Treat symptomatically.

	Section 5 - FIRE FIGHTING MEASURES	
Vapour Pressure (mmHG):	Negligible @ 25	
Upper Explosive Limit (%):	Not applicable	
Specific Gravity (water=1):	2.165	
Lower Explosive Limit (%):	Not applicable	

EXTINGUISHING MEDIA

- •
- There is no restriction on the type of extinguisher which may be used.

Use extinguishing media suitable for surrounding area.

FIRE FIGHTING

- Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves for fire only.
- Prevent, by any means available, spillage from entering drains or water course.
- Use fire fighting procedures suitable for surrounding area.
- Do not approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Non combustible.
- Not considered to be a significant fire risk, however containers may burn.

Decomposition may produce toxic fumes of: hydrogen chloride, metal oxides.

May emit poisonous fumes.

May emit corrosive fumes.

FIRE INCOMPATIBILITY

■ None known.

PERSONAL PROTECTION

Glasses:

Safety Glasses.

Chemical goggles.

sc-203274

Material Safety Data Sheet

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

Gloves:

1.NATURAL RUBBER 2.NITRILE

Respirator: Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- · Clean up all spills immediately.
- Avoid breathing dust and contact with skin and eyes.
- Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust.
- Sweep up, shovel up or vacuum up (consider explosion-proof machines designed to be grounded during storage and use).
- Place spilled material in clean, dry, sealable, labeled container.

MAJOR SPILLS

- Moderate hazard.
- CAUTION: Advise personnel in area.
- Alert Emergency Responders and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- -
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.

sc-203274

Material Safety Data Sheet

Hazard Alert Code Key:	EXTREME	HIGH	MODERATE	LOW
------------------------	---------	------	----------	-----

- Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.


RECOMMENDED STORAGE METHODS

- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

- X: Must not be stored together
- O: May be stored together with specific preventions
- +: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m³	STEL ppm	STEL mg/m³	Peak ppm	Peak mg/m³	TWA F/CC	Notes
US - Oregon Permissible Exposure Limits (Z3)	sodium chloride (Inert or Nuisance Dust: (d) Total dust)		10						*
US OSHA Permissible Exposure Levels (PELs) - Table Z3	sodium chloride (Inert or Nuisance Dust: (d) Respirable fraction)		5						
US OSHA Permissible Exposure Levels (PELs) - Table Z3	sodium chloride (Inert or Nuisance Dust: (d) Total dust)		15						
US - Hawaii Air Contaminant Limits	sodium chloride (Particulates not other wise regulated - Total dust)		10						
US - Hawaii Air Contaminant Limits	sodium chloride (Particulates not other wise regulated - Respirable fraction)		5						
US - Oregon Permissible Exposure Limits (Z3)	sodium chloride (Inert or Nuisance Dust: (d) Respirable fraction)		5						*
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	sodium chloride (Particulates not otherwise regulated Respirable fraction)		5						

sc-203274

Material Safety Data Sheet

The Power to Questio

Hazard Alert Code Key:	EXTREME	HIGH	MODERATE	LOW
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	sodium chloride (F otherwise regulate Respirable fraction	d (PNOR)(f)- 5		
US - Michigan Exposure Limits fo Air Contaminants	r sodium chloride (F otherwise regulate dust)			

MATERIAL DATA

SODIUM CHLORIDE:

■ It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.

At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

- OSHA (USA) concluded that exposure to sensory irritants can:
- cause inflammation
 cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses.

HANDS/FEET

- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- frequency and duration of contact,
- · chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according
 to EN 374) is recommended.

sc-203274

Material Safety Data Sheet

The Power to Owntie

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

· Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- nitrile rubber
- butyl rubber
- fluorocaoutchouc
- polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- .
- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- · Eye wash unit.
- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory. These may
 be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a
 complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

GLOVE SELECTION INDEX

■ Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the computer-generated selection: sodium chloride

■ Protective Material CPI *.

NATURAL RUBBERANATURAL+NEOPRENEANITRILEA

■ * CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

RESPIRATOR

Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
10 x PEL	P1	-	PAPR-P1
	Air-line*	-	-
50 x PEL	Air-line**	P2	PAPR-P2

^{*} Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

sc-203274

Material Safety Data Sheet

Hazard Alert Code Key:	EXTREME	HIGH	MODERATE	LOW
100 x PEL	-	P3	<u>-</u>	
		Air-line*	-	
100+ x PEL	-	Air-line**	PAPR-	P3

* - Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.

Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.

Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered.

Such protection might consist of:

- (a): particle dust respirators, if necessary, combined with an absorption cartridge;
- (b): filter respirators with absorption cartridge or canister of the right type;
- (c): fresh-air hoods or masks

Type of Contaminant:

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Air Speed:

Type of Contaminant.	7 th Opeca.
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)
Within each range the appropriate value depends on:	
Lower end of the range	Upper end of the range
1: Room air currents minimal or favorable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

sc-203274

Material Safety Data Sheet

,

Not applicable

Hazard Alert Code Key:	EXTREME	HIGH	MODERATE	LOW
PHYSICAL PROPERTIES	}			
Solid. Mixes with water.				
State	Divided solid	Molecula	r Weight	58.44
Melting Range (°F)	1473.8	Viscosity		Not Applicable
Boiling Range (°F)	2575.4	Solubility	in water (g/L)	Miscible
Flash Point (°F)	Not Applicable	e pH (1% s	olution)	Not available
Decomposition Temp (°F)	Not applicable	pH (as su	ipplied)	6.7-7.3
Autoignition Temp (°F)	Not applicable	e Vapour P	ressure (mmHG)	Negligible @ 25
Upper Explosive Limit (%)	Not applicable	e Specific (Gravity (water=1)	2.165
Lower Explosive Limit (%)	Not applicable	e Relative '	Vapor Density (air=1)	Not available.

APPEARANCE

Volatile Component (%vol)

Odourless, colourless, transparent crystals or white crystalline powder; completely soluble in water (2.165 g/cc). Available as Rocksalt (crude), Technical, Pure, Food grade, BP grades; also solar salt, vacuum salt, sea salt and common salt. A saturated solution of solar salt is approximately pH 8 and vacuum salt is pH 9.5 - 11.0

Evaporation Rate

Not applicable.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- •
- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

■ Metals and their oxides or salts may react violently with chlorine trifluoride. Chlorine trifluoride is a hypergolic oxidizer. It ignites on contact (without external source of heat or ignition) with recognized fuels - contact with these materials, following an ambient or slightly elevated temperature, is often violent and may produce ignition. The state of subdivision may affect the results. Food grade materials must be protected from all possible contaminants.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

sodium chloride

TOXICITY AND IRRITATION

Intravenous (Guinea pig) LD: 300 mg/kg

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.					
TOXICITY	IRRITATION				
Oral (rat) LD50: 3000 mg/kg	Skin (rabbit): 500 mg/24h - Mild				
Oral (human) TDLo: 12357 mg/kg/23d	Eye (rabbit): 10 mg - Moderate				
Intravenous (Mouse) LD50: 645 mg/kg	Eye (rabbit):100 mg/24h - Moderate				
Oral (Human) TDLo: 12357 mg/kg					
Subcutaneous (Rat) LD: 3500 mg/kg					
Intraperitoneal (Mouse) LD50: 2602 mg/kg					
Intravenous (Rabbit) LD: 1100 mg/kg					
Subcutaneous (Guinea pig) LD: 2160 mg/kg					

sc-203274

Material Safety Data Sheet

The Power to Question

Hazard Alert Code Key:	EXTREME	HIGH	MODERATE	LOW

Intraperitoneal (Rat) LD50: 2600 mg/kg

■ The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

Oral Lowest Toxic Dose (Human): 8.2 mg/kg

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

SODIUM CHLORIDE:

■ Although inorganic chloride ions are not normally considered toxic they can exist in effluents at acutely toxic levels (chloride >3000 mg/l). the resulting salinity can exceed the tolerances of most freshwater organisms.

Inorganic chlorine eventually finds its way into the aqueous compartment and as such is bioavailable. Incidental exposure to inorganic chloride may occur in occupational settings where chemicals management policies are improperly applied. The toxicity of chloride salts depends on the counter-ion (cation) present; that of chloride itself is unknown. Chloride toxicity has not been observed in humans except in the special case of impaired sodium chloride metabolism, e.g. in congestive heart failure. Healthy individuals can tolerate the intake of large quantities of chloride provided that there is a concomitant intake of fresh water.

Although excessive intake of drinking-water containing sodium chloride at concentrations.

above 2.5 g/litre has been reported to produce hypertension, this effect is believed to be related to the sodium ion concentration.

Chloride concentrations in excess of about 250 mg/litre can give rise to detectable taste in water, but the threshold depends upon the associated cations. Consumers can, however, become accustomed to concentrations in excess of 250 mg/litre. No health-based guideline value is proposed for chloride in drinking-water.

In humans, 88% of chloride is extracellular and contributes to the osmotic activity of body fluids. The electrolyte balance in the body is maintained by adjusting total dietary intake and by excretion via the kidneys and gastrointestinal tract. Chloride is almost completely absorbed in normal individuals, mostly from the proximal half of the small intestine. Normal fluid loss amounts to about 1.5?2 liters/day, together with about 4 g of chloride per day. Most (90 - 95%) is excreted in the urine, with minor amounts in faeces (4-%) and sweat (2%).

Chloride increases the electrical conductivity of water and thus increases its corrosivity. In metal pipes, chloride reacts with metal ions to form soluble salts thus increasing levels of metals in drinking-water. In lead pipes, a protective oxide layer is built up, but chloride enhances galvanic corrosion. It can also increase the rate of pitting corrosion of metal pipes.

■ DO NOT discharge into sewer or waterways.

TLm 96 > 1000 ppm

Ecotoxicity

Ingredient Persistence: Water/Soil Persistence: Air Bioaccumulation Mobility sodium chloride LOW LOW HIGH

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

sc-203274

Material Safety Data Sheet

The Power in Question

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible or consult manufacturer for recycling options.
- Consult Waste Management Authority for disposal.
- Bury residue in an authorized landfill.
- Recycle containers where possible, or dispose of in an authorized landfill.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

sodium chloride (CAS: 7647-14-5) is found on the following regulatory lists;

"Canada Domestic Substances List (DSL)", "Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (English)", "Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (French)", "OECD Representative List of High Production Volume (HPV) Chemicals", "US DOE Temporary Emergency Exposure Limits (TEELs)", "US Food Additive Database", "US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Cumulative effects may result following exposure*.
- May produce discomfort of the eyes respiratory tract and skin*.
- * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at:

 www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Jan-19-2010 Print Date:May-1-2010