Sodium nitroferricyanide(III) dihydrate

sc-203394

Hazard Alert Code Key:

- EXTREME
- HIGH
- MODERATE
- LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Sodium nitroferricyanide(III) dihydrate

STATEMENT OF HAZARDOUS NATURE

SUPPLIER
Company: Santa Cruz Biotechnology, Inc.
Address: 2145 Delaware Ave
Santa Cruz, CA 95060
Telephone: 800.457.3801 or 831.457.3800
Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305
Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE
Reagent for the detection of many organic compounds including acetone, aldehydes, alkali sulfides, zinc and sulfur dioxide. Also used as an anti-hypertensive, in strictly limited dosage.

SYNONYMS
C5-Fe-N6-Na2-O, Na2Fe(CN)5NO.2H2O, "sodium nitrosylpentacyanoferrate (III)"; "sodium nitrosylpentacyanoferrate (III)"; "sodium nitroferricyanide dihydrate"; "sodium nitroprussiate dihydrate"; "Nipride dihydrate"; Nipruss, Nitropress, "pentacyanonirosyl-, disodium dihydrate"; "sodium nitroprusside dihydrate"; "ferrate(2-), pentacyanonirosyl-, disodium, dihydrate"; "disodium nitroprusside dihydrate"; "sodium nitrosylpentacyanoferrate (III) dihydrate"; "sodium nitroprusside dihydrate"; "sodium nitrosylpentacyanoferrate (III) dihydrate"; "sodium nitrosopentacyanoferrate (III)"; "sodium nitrosopentacyanoferrate (III)"

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW
RISK
Toxic if swallowed.
Contact with acids liberates very toxic gas.
Toxic to aquatic organisms.
May cause long-term adverse effects in the environment.

POTENTIAL HEALTH EFFECTS
ACUTE HEALTH EFFECTS
SWALLOWED
- Toxic effects may result from the accidental ingestion of the material; animal experiments indicate that ingestion of less than 40 gram may be fatal or may produce serious damage to the health of the individual.
- A number of materials such as cyanamide, calcium cyanamide, cyanates, isocyanates, isonitrile, thiocyanates, ferricyanide and ferrocyanide, and cyanacetates do not exhibit the same toxic effects as cyanides and nitriles.
- Complex cyanides are compounds in which the cyanide anion is incorporated into a complex or complexes; these compounds are different in chemical and toxicologic properties from simple cyanides. In solution, the stability of the cyanide complex varies with the type of cation and the complex that it forms. Some of these are dissolvable in weak acids to give free cyanide and a cation, while other complexes require much stronger acidic conditions for dissociation. The least-stable complex metalocyanides include [Zn(CN)4]2-, [Cd(CN)3]-, and [Cd(CN)4]2-; moderately stable complexes include Cu(CN)2-; [Cu(CN)3]2-; [Ni(CN)4]2-, and Ag(CN)2-; and the most stable complexes include [Fe(CN)6]4- and [Co(CN)6]4-. The toxicity of complex cyanides is usually related to their ability to release cyanide ions in solution, which then enter into an equilibrium with HCN; relatively small fluctuations in pH significantly affect their biocidal properties.
- Cyanide poisoning can cause increased saliva output, nausea without vomiting, anxiety, confusion, vertigo, dizziness, stiffness of the lower jaw, convulsions, spasms, paralysis, coma and irregular heartbeat, and stimulation of breathing followed by failure. Often the skin becomes cyanosed (blue-gray), and this is often delayed. Doses which are not lethal are eventually excreted in the urine.

EYE
- Although the material is not thought to be an irritant, direct contact with the eye may cause transient discomfort characterized by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals.

SKIN
- Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.
- There is some evidence to suggest that this material can cause inflammation of the skin on contact in some persons.
- Skin contact with cyanides may cause an itchy rash with blisters and scabs which may become infected.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED
- The material is not thought to produce respiratory irritation (as classified using animal models). Nevertheless inhalation of dusts, or fume, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress.
- Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS
- Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.
- Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray. Chronic exposure to cyanides and certain nitriles may result in interference to iodine uptake by thyroid gland and its consequent enlargement. This occurs following metabolic conversion of the cyanide moiety to thiocyanate. Thyroid insufficiency may also occur as a result of metabolic conversion of cyanides to the corresponding thiocyanate. Exposure to small amounts of cyanide compounds over long periods are reported to cause loss of appetite, headache, weakness, nausea, dizziness, abdominal pain, changes in taste and smell, muscle cramps, weight loss, flushing of the face, persistent runny nose and irritation of the upper respiratory tract and eyes. These symptoms are not specific to cyanide exposure and therefore the existence of a chronic cyanide toxicity remains speculative. Repeated minor contact with cyanides produce a characteristic rash with itching, papules (small, superficial raised spots on the skin) and possible sensitization. Concerns have been expressed that low-level, long term exposures may result in damage to the nerves of the eye.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>HAZARD RATINGS</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability:</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Toxicity:</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Body Contact:</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Reactivity:</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Chronic:</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME</th>
<th>CAS RN</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>sodium nitroprusside</td>
<td>14402-89-2</td>
<td>>98</td>
</tr>
</tbody>
</table>

Section 4 - FIRST AID MEASURES

SWALLOWED
- IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.
- Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:
- For advice, contact a Poisons Information Center or a doctor.
- Urgent hospital treatment is likely to be needed.
If conscious, give water to drink.

INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

NOTE: Wear a protective glove when inducing vomiting by mechanical means.

In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.

If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist.

If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS.

EYE

• If this product comes in contact with the eyes:
 • Immediately hold eyelids apart and flush the eye continuously with running water.
 • Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
 • Continue flushing until advised to stop by the Poisons Information Center or a doctor, or for at least 15 minutes.
 • Transport to hospital or doctor without delay.
 • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

• If skin contact occurs:
 • Immediately remove all contaminated clothing, including footwear
 • Flush skin and hair with running water (and soap if available).
 • Seek medical attention in event of irritation.

INHALED

• If fumes or combustion products are inhaled remove from contaminated area.
 • Lay patient down. Keep warm and rested.
 • Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
 • Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
 • Transport to hospital, or doctor.

NOTES TO PHYSICIAN

• Signs symptoms of acute cyanide poisoning reflect cellular hypoxia and are often non-specific.
 • Cyanosis may be a late finding.
 • A bradycardia, hypertensive and tachypneic patient suggests poisoning especially if CNS and cardiovascular depression subsequently occurs.
 • Immediate attention should be directed towards assisted ventilation, administration of 100% oxygen, insertion of intravenous lines and institution of cardiac monitoring.
 • Obtain an arterial blood gas immediately and correct any severe metabolic acidosis (pH below 7.15).
 • Mildly symptomatic patients generally require supportive care alone. Nitrates should not be given indiscriminately - in all cases of moderate to severe poisoning, they should be given in conjunction with thiosulfate. As a temporizing measure supply amyl nitrite perls (0.2ml inhaled 30 seconds every minute) until intravenous lines for sodium nitrite are established. 10 ml of a 3% solution is administered over 4 minutes to produce 20% methemoglobin in adults. Follow directly with 50 ml of 25% sodium thiosulfate, at the same rate, IV. If symptoms reappear or persist within 1/2-1 hour, repeat nitrite and thiosulfate at 50% of initial dose. As the mode of action involves the metabolic conversion of the thiosulfate to thiocyanate, renal failure may enhance thiocyanate toxicity.
 • Methylene blue is not an antidote. [Ellenhorn and Barceloux: Medical Toxicology]

If amyl nitrite intervention is employed then Medical Treatment Kits should contain the following:

- One box containing one dozen amyl nitrite ampoules
- Two sterile ampoules of sodium nitrite solution (10 mL of a 3% solution in each)
- Two sterile ampoules of sodium thiosulfate solution (50 mL of a 25% solution in each)
- One 10 mL sterile syringe. One 50 mL sterile syringe. Two sterile intravenous needles. One tourniquet.
- Two sterile ampoules of sodium thiosulfate solution (50 mL of a 25% solution in each)
- Two sterile ampoules of sodium nitrite solution (10 mL of a 3% solution in each)
- One dozen gauze pads.
- Latex gloves
 • A "Biohazard" bag for disposal of bloody/contaminated equipment.
 • A set of cyanide instructions on first aid and medical treatment.

- Notes on the use of amyl nitrite:-
 • AN is highly volatile and flammable - do not smoke or use around a source of ignition.
 • If treating patient in a windy or draughty area provide some shelter or protection (shirt, wall, drum, cupped hand etc.) to prevent amyl nitrite vapor from being blown away. Keep ampoule upwind from the nose, the objective is to get amyl nitrite into the patient's lungs.
 • Rescuers should avoid AN inhalation to avoid becoming dizzy and losing competence.
 • Lay the patient down. Since AN dilutes blood vessels and lowers blood pressure, lying down will help keep patient conscious.

DO NOT overdose - excessive use might put the patient into shock. Experience at DuPont plants has not shown any serious after-effects from treatment with amyl nitrite.

ADDITIONAL NOTES:

• Major medical treatment procedures may vary e.g. US (FDA method as recommended by DuPont) uses amyl nitrite as a methemoglobin generator, followed by treatment with sodium nitrite and then sodium thiosulfate.

MODES OF ACTION: Amyl nitrite (AN) reacts with hemoglobin (HB) to form about 5% methemoglobin (MHB). Sodium nitrite (NaNO2) reacts with hemoglobin to form approximately 20-30% methemoglobin. Methemoglobin attracts cyanide ions (CN) from tissue and binds with them to become cyanmethemoglobin (CNMHB) which is excreted by the kidneys. i.e. AN + HB = MHB NaNO2 + HB = MHB CN + MHB = CNMHB Na2S2O3 + CNMHB + O2 = HSCN

• The administration of the antidote salts is intravenous in normal saline, Ringers lactate or other available IV fluid. May produce metabolic cyanide.
Section 5 - FIRE FIGHTING MEASURES

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapour Pressure (mmHg)</td>
<td>Negligible</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Specific Gravity (water=1)</td>
<td>1.72</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

EXTINGUISHING MEDIA
- Water spray or fog.
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.

FIRE FIGHTING
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Use fire fighting procedures suitable for surrounding area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS
- Non combustible.
- Not considered to be a significant fire risk, however containers may burn.
- Decomposition may produce toxic fumes of: nitrogen oxides (NOx), metal oxides.
- May emit poisonous fumes.

FIRE INCOMPATIBILITY
- None known.

PERSONAL PROTECTION
- Glasses: Chemical goggles.
- Gloves:
- Respirator:

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS
- Environmental hazard - contain spillage.
- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Control personal contact by using protective equipment.
- Use dry clean up procedures and avoid generating dust.
- Place in a suitable, labelled container for waste disposal.

MAJOR SPILLS
- Environmental hazard - contain spillage.
- Clear area of personnel and move upwind.
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labeled containers for recycling.
- Neutralize/decontaminate residue.
- Collect solid residues and seal in labeled drums for disposal.
- Wash area and prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL
PROTECTIVE ACTION ZONE

Isolation Distance 25 meters

Downwind Protection Distance 250 meters

FOOTNOTES

1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confine the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.

2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.

3 INITIAL ISOLATION ZONE is defined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.

4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder.

6 IERG information is derived from CANUTEC - Transport Canada.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

RECOMMENDED STORAGE METHODS

Glass container.
- Lined metal can, Lined metal pail/drum
- Plastic pail
- Polyliner drum
- Packing as recommended by manufacturer.
- Check all containers are clearly labeled and free from leaks.

For low viscosity materials
- Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.

For materials with a viscosity of at least 2690 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.):
- Removable head packaging;
• Cans with friction closures and
t• low pressure tubes and cartridges may be used.
- Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning
material in contact with inner and outer packages *. - In addition, where inner packagings are glass and contain liquids of
packing group I and II there must be sufficient inert absorbent to absorb any spillage *. - * unless the outer packaging is a
close fitting molded plastic box and the substances are not incompatible with the plastic.

STORAGE REQUIREMENTS

• Plastic bag
• NOTE: Bags should be stacked, blocked, interlocked, and limited in height so that they are stable and secure against
sliding or collapse.
• Store in original containers.
• Keep containers securely sealed.
• Store in a cool, dry, well-ventilated area.
• Store away from incompatible materials and foodstuffs containers.
• Protect containers against physical damage and check regularly for leaks.
• Observe manufacturer’s storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

STORAGE REQUIREMENTS

• Plastic bag
• NOTE: Bags should be stacked, blocked, interlocked, and limited in height so that they are stable and secure against
sliding or collapse.
• Store in original containers.
• Keep containers securely sealed.
• Store in a cool, dry, well-ventilated area.
• Store away from incompatible materials and foodstuffs containers.
• Protect containers against physical damage and check regularly for leaks.
• Observe manufacturer’s storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

X: Must not be stored together
O: May be stored together with specific precautions
+: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

<table>
<thead>
<tr>
<th>Source</th>
<th>Material</th>
<th>TWA ppm</th>
<th>TWA mg/m³</th>
<th>STEL ppm</th>
<th>STEL mg/m³</th>
<th>Peak ppm</th>
<th>Peak mg/m³</th>
<th>TWA F/CC</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>US - Idaho - Limits for Air Contaminants</td>
<td>sodium nitroprusside (Cyanides (as CN))</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - California Permissible Exposure Limits for Chemical Contaminants</td>
<td>sodium nitroprusside (Cyanide, as CN)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Minnesota Permissible Exposure Limits (PELS)</td>
<td>sodium nitroprusside (Cyanides (as CN))</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants</td>
<td>sodium nitroprusside (Cyanides (as CN))</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants</td>
<td>sodium nitroprusside (Cyanides (as CN))</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants</td>
<td>sodium nitroprusside (Cyanides (as CN))</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US OSHA Permissible Exposure Levels (PELS) - Table Z1</td>
<td>sodium nitroprusside (Cyanides (as CN))</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Alaska Limits for Air Contaminants</td>
<td>sodium nitroprusside (Cyanides (as CN))</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Hawaii Air Contaminant Limits</td>
<td>sodium nitroprusside (Cyanides (as CN))</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Washington Permissible exposure limits of air contaminants</td>
<td>sodium nitroprusside (Cyanides (as CN))</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Quebec Permissible Exposure Values for Airborne Contaminants (English)</td>
<td>sodium nitroprusside (Cyanides (as CN))</td>
<td>10</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants</td>
<td>sodium nitroprusside (Cyanides (as CN))</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Oregon Permissible Exposure Limits (Z1)</td>
<td>sodium nitroprusside (Cyanides (as CN))</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Region</td>
<td>Substance Description</td>
<td>Standard 1</td>
<td>Standard 2</td>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>------------</td>
<td>------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - British Columbia</td>
<td>sodium nitroprusside (Iron salts - soluble, as Fe)</td>
<td>1</td>
<td>2</td>
<td>TUV Basis: upper respiratory tract & skin irritation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Ontario Occupational Exposure Limits</td>
<td>sodium nitroprusside (Iron salts, water-soluble (as iron))</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Alberta Occupational Exposure Limits</td>
<td>sodium nitroprusside (Iron salts, soluble, as Fe)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US ACGIH Threshold Limit Values (TLV)</td>
<td>sodium nitroprusside (Iron salts - soluble (as Fe))</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US NIOSH Recommended Exposure Limits (RELs)</td>
<td>sodium nitroprusside (Iron salts (soluble, as Fe))</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants</td>
<td>sodium nitroprusside (Iron salts (soluble) (as Fe))</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants</td>
<td>sodium nitroprusside (Iron salts (soluble) (as Fe))</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Minnesota Permissible Exposure Limits (PELs)</td>
<td>sodium nitroprusside (Iron salts (soluble)(as Fe))</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - California Permissible Exposure Limits for Chemical Contaminants</td>
<td>sodium nitroprusside (Iron salts, soluble, as Fe)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Quebec Permissible Exposure Values for Airborne Contaminants (English)</td>
<td>sodium nitroprusside (Iron salts, soluble (as Fe))</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Hawaii Air Contaminant Limits</td>
<td>sodium nitroprusside (Iron salts (soluble) (as Fe))</td>
<td>1</td>
<td>2</td>
<td>(CAS (Varies with compound))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Alaska Limits for Air Contaminants</td>
<td>sodium nitroprusside (Iron salts (soluble) (as Fe))</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Saskatchewan Occupational Health and Safety Regulations - Contamination Limits</td>
<td>sodium nitroprusside (Iron salts, soluble, (as Fe))</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Yukon Permissible Concentrations for Airborne Contaminant Substances</td>
<td>sodium nitroprusside (Iron salts, soluble (as Fe))</td>
<td>-</td>
<td>1 - 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Washington Permissible exposure limits of air contaminants</td>
<td>sodium nitroprusside (Iron salts, soluble (as Fe))</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Nova Scotia Occupational Exposure Limits</td>
<td>sodium nitroprusside (Iron salts - soluble (as Fe))</td>
<td>1</td>
<td></td>
<td>TUV Basis: upper respiratory tract & skin irritation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Prince Edward Island Occupational Exposure Limits</td>
<td>sodium nitroprusside (Iron salts - soluble (as Fe))</td>
<td>1</td>
<td></td>
<td>TUV Basis: upper respiratory tract & skin irritation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Northwest Territories Occupational Exposure Limits (English)</td>
<td>sodium nitroprusside (Iron salts, soluble (as Fe))</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Michigan Exposure Limits for Air Contaminants</td>
<td>sodium nitroprusside (Iron salts (soluble) (as Fe))</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Oregon Permissible Exposure Limits (Z1)</td>
<td>sodium nitroprusside (Iron salts, soluble, as Fe)</td>
<td>1</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Oregon Permissible Exposure Limits (Z3)</td>
<td>sodium nitroprusside (Inert or Nuisance Dust: (d) Total dust)</td>
<td>10</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US OSHA Permissible Exposure Levels (PELs) - Table Z3</td>
<td>sodium nitroprusside (Inert or Nuisance Dust: (d) Respirable fraction)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US OSHA Permissible Exposure Levels (PELs) - Table Z3</td>
<td>sodium nitroprusside (Inert or Nuisance Dust: (d) Total dust)</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Hawaii Air Contaminant Limits</td>
<td>sodium nitroprusside</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
US - Hawaii Air Contaminant Limits
(Particulates not otherwise regulated - Respirable fraction) 5

US - Oregon Permissible Exposure Limits (Z23)
sodium nitroprusside (Inert or Nuisance Dust: (d) Respirable fraction) 5

US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants
sodium nitroprusside (Particulates not otherwise regulated Respirable fraction) 5

US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants
sodium nitroprusside (Particulates not otherwise regulated (PNOR)(f)- Respirable fraction) 5

US - Michigan Exposure Limits for Air Contaminants
sodium nitroprusside (Particulates not otherwise regulated, Respirable dust) 5

EMERGENCY EXPOSURE LIMITS

Material | Revised IDLH Value (mg/m3) | Revised IDLH Value (ppm)
sodium nitroprusside | 25 |

MATERIAL DATA
SODIUM NITROPRUSSIDE:
- It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.
- At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:
- cause inflammation
- cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE
- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses.

HANDS/FEET
- Wear chemical protective gloves, eg. PVC.
- Wear safety footwear or safety gumboots, eg. Rubber.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.

Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
OTHER

- Overalls.
- Eyewash unit.
- Barrier cream.
- Skin cleansing cream.

- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

- Local exhaust ventilation usually required. If risk of overexposure exists, wear an approved respirator. Correct fit is essential to obtain adequate protection an approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

<table>
<thead>
<tr>
<th>Type of Contaminant</th>
<th>Air Speed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>solvent, vapors, degreasing etc., evaporating from tank (in still air).</td>
<td>0.25-0.5 m/s (50-100 f/min.)</td>
</tr>
<tr>
<td>aerosols, fumes from pouring operations, intermittent container filling, low speed conveyor transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)</td>
<td>0.5-1 m/s (100-200 f/min.)</td>
</tr>
<tr>
<td>direct spray, spray painting in shallow booths, drum filling, conveyor loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)</td>
<td>1-2.5 m/s (200-500 f/min.)</td>
</tr>
<tr>
<td>grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).</td>
<td>2.5-10 m/s (500-2000 f/min.)</td>
</tr>
</tbody>
</table>

Within each range the appropriate value depends on:

- Lower end of the range
- Upper end of the range

1: Room air currents minimal or favorable to capture
2: Contaminants of low toxicity or of nuisance value only.
3: Intermittent, low production.
4: Large hood or large air mass in motion

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Mixes with water. Contact with acids liberates very toxic gas.

<table>
<thead>
<tr>
<th>State</th>
<th>DIVIDED SOLID</th>
<th>Molecular Weight</th>
<th>297.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting Range (°F)</td>
<td>Not available.</td>
<td>Viscosity</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Boiling Range (°F)</td>
<td>Not available.</td>
<td>Solubility in water (g/L)</td>
<td>Miscible</td>
</tr>
<tr>
<td>Flash Point (°F)</td>
<td>Not applicable</td>
<td>pH (1% solution)</td>
<td>Not available.</td>
</tr>
<tr>
<td>Decomposition Temp (°F)</td>
<td>Not Available</td>
<td>Vapour Pressure (mmHG)</td>
<td>Negligible</td>
</tr>
<tr>
<td>Autoignition Temp (°F)</td>
<td>Not available.</td>
<td>Specific Gravity (water=1)</td>
<td>1.72</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not applicable</td>
<td>Relative Vapor Density (air=1)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not applicable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPEARANCE

<table>
<thead>
<tr>
<th>Volatile Component (%vol)</th>
<th>Negligible</th>
<th>Evaporation Rate</th>
<th>Not applicable</th>
</tr>
</thead>
</table>

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY
- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY
- ferricyanide:
 - mixtures with water, acids, or alcohols may slowly decompose producing hydrocyanic acid
 - reacts explosively with strong oxidisers, ammonia chromium trioxide, chromic acid, chromic anhydride, sodium nitrite
 - reacts violently with copper(II) nitrate, trihydrate.
- Contact with acids produces toxic fumes.
- Metals and their oxides or salts may react violently with chlorine trifluoride. Chlorine trifluoride is a hypergolic oxidizer. It ignites on contact (without external source of heat or ignition) with recognized fuels - contact with these materials, following an ambient or slightly elevated temperature, is often violent and may produce ignition. The state of subdivision may affect the results.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

sodium nitroprusside

TOXICITY AND IRRITATION
- unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

<table>
<thead>
<tr>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral (rat) LD50: 99 mg/kg</td>
<td>Nil Reported</td>
</tr>
<tr>
<td>Oral (mouse) LD50: 61 mg/kg</td>
<td></td>
</tr>
</tbody>
</table>

SKIN

<table>
<thead>
<tr>
<th>sodium nitroprusside</th>
<th>US - Washington Permissible exposure limits of air contaminants - Skin</th>
<th>Skin Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>sodium nitroprusside</td>
<td>US - Hawaii Air Contaminant Limits - Skin Designation</td>
<td>Skin Designation</td>
</tr>
<tr>
<td>sodium nitroprusside</td>
<td>US OSHA Permissible Exposure Levels (PELs) - Skin</td>
<td>Skin Designation</td>
</tr>
<tr>
<td>sodium nitroprusside</td>
<td>US - California Permissible Exposure Limits for Chemical Contaminants - Skin</td>
<td>Skin</td>
</tr>
<tr>
<td>sodium nitroprusside</td>
<td>US - California Permissible Exposure Limits for Chemical Contaminants - Skin</td>
<td>Skin Designation</td>
</tr>
</tbody>
</table>

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

SODIUM NITROPRUSSIDE:
- On the basis of available evidence concerning either toxicity, persistence, potential to accumulate and/or observed environmental fate and behaviour, the material may present a danger, immediate or long-term and/or delayed, to the structure and/or functioning of natural ecosystems.
- Toxic to aquatic organisms.
- Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.
- Wastes resulting from use of the product must be disposed of on site or at approved waste sites.
- Metal-containing inorganic substances generally have negligible vapour pressure and are not expected to partition to air. Once released to surface waters and moist soils their fate depends on solubility and dissociation in water. Environmental processes (such as oxidation and the presence of acids or bases) may transform insoluble metals to more soluble ionic forms. Such ionic species may bind to dissolved ligands or sorb to solid particles in aquatic or aqueous media. A significant proportion of dissolved/sorbed metals will end up in sediments through the settling of suspended particles. The remaining metal ions can then be taken up by aquatic organisms. When released to dry soil most metals will exhibit limited mobility and remain in the upper layer; some will leach locally into ground water and/or surface water ecosystems when soaked by rain or melt ice. Environmental processes may also be important in changing solubilities.
- Even though many metals show few toxic effects at physiological pHs, transformation may introduce new or magnified effects. A metal ion is considered infinitely persistent because it cannot degrade further.
- The current state of science does not allow for an unambiguous interpretation of various measures of bioaccumulation.
- The counter-ion may also create health and environmental concerns once isolated from the metal. Under normal physiological conditions the counter-ion may be essentially insoluble and may not be bioavailable.
- Environmental processes may enhance bioavailability.
- for complex metallo cyanides:
 - Metallo cyanide complexes have a wide range of stabilities. Some of the metallo cyanide anions are extremely stable.
 - Cobaltocyanide is difficult to destroy with highly destructive acid distillation in a laboratory. The iron cyanides are also very stable but exhibit photodecomposition. In the presence of sunlight they dissociate to release the cyanide ion, thus affecting toxicity; at night the reaction may reverse to produce a less toxic form or state.
 - Zinc [Zn(CN)4 -2] and cadmium [Cd(CN)3 - and Cd(CN)4 -2] complexes dissociate rapidly and nearly completely in dilute
solutions. Moderately stable complexes include copper [Cu(CN)2 - and Cu(CN)3 -2], nickel [Ni(CN)4 -2], and silver [Ag (CN)2-
-2]. The most stable complexes include iron [Fe(CN)6 4] and cobalt [Co(CN)6-4].
The weak acid dissociable cyanides (CNW) are essentially all cyanide forms excluding iron-cyanide complexes (ferrocyanides, ferrocyanides). Cyanide complexes of iron dissociate very little, but they are subject to photolysis by natural light. Release of cyanide ion by photodecomposition might be important in relatively clean receiving waters.
Tests carried out on metallo-cyanide complexes revealed that no matter how stable the complexes were, they must be regarded as a delayed source of free cyanide in natural aquatic systems which will be released under certain conditions (e.g., ultraviolet irradiation, decreased pH, increased temperature. This free cyanide is then subject to various natural removal mechanisms.
Complex metallocyanide ions in solution can be dissociated or decomposed to release free cyanide ion, that, in turn, forms HCN through hydrolytic reactions in water. The concentration of HCN may change due to exposure to natural light, changes in pH or hardness, or because of increased dilution of the complex. The toxicity of these complexes seems to be due only to the free cyanide rather than the complex.
The effect of pH on the toxicity of metallo-cyanides is much more complex because of the greater number of dissociation reactions involved, and the long time required (up to ten days) to reach the dissociation equilibrium. A simplified example of a metallo-cyanide dissociation is shown for cyanonickelate(II): \([\text{Ni(CN)}_4^{2-} \leftrightarrow \text{Ni}^{2+} + 4\text{CN}^-]\); \(4\text{CN}^- + 4\text{H}^+ \leftrightarrow 4\text{HCN}\)

It is the undissociated hydrogen cyanide (HCN) which contributes most to the toxicity; an increase in pH from 7.4 to 7.8 reduces the toxicity of cyanonickelate by ten- to 13-fold. Because the ionisation constants for many of the metallocyanide equilibria are not known with any accuracy, and because of the long time taken to reach equilibrium, it is difficult to measure the toxicity of the products formed; the likelihood of predicting the toxicity of a complex effluent containing metallo-cyanides from its chemical analysis is remote.
Clearly, toxicity tests on metallo-cyanides alone must be carried out with very precise pH control, but it may be necessary only to test effluents containing these compounds in a limited range of soft acid to 'hard alkaline' dilution waters. This would give an approximate indication of the effect of these factors on their toxicity, and discharge controls for such effluents could then be adjusted, albeit roughly, to allow for changes in the hardness and pH of the receiving water.

Section 13 - DISPOSAL CONSIDERATIONS

US EPA Waste Number & Descriptions

A. General Product Information
Reactivity characteristic: use EPA hazardous waste number D003 (waste code R).

Disposal Instructions
All waste must be handled in accordance with local, state and federal regulations.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

Consult Waste Management Authority for disposal.

Bury residue in an authorized landfill.
Recycle containers where possible, or dispose of in an authorized landfill.

Section 14 - TRANSPORTATION INFORMATION

DOT:
Symbols: None
Hazard class or Division: 6.1
Identification Numbers: UN3288
Label Codes: 6.1
Packaging: Exceptions: 153
Packaging: Non-bulk: 213
Quantity Limitations: Cargo aircraft only: 200 kg
Vessel stowage: Location: A
Vessel stowage: Other: None S.M.P.: YES
Hazardous materials descriptions and proper shipping names:
Toxic solid, inorganic, n.o.s.

Air Transport IATA:
- ICAO/IATA Class: 6.1
- ICAO/IATA Subrisk: None
- UN/ID Number: 3288
- Packing Group: III
- Special provisions: A3

Shipping Name: TOXIC SOLID, INORGANIC, N.O.S. *(CONTAINS SODIUM NITROPRUSSIDE)*

Maritime Transport IMDG:
- IMDG Class: 6.1
- IMDG Subrisk: None
- UN Number: 3288
- Packing Group: III
- EMS Number: F-A,S-A
- Special provisions: 223 274 944
- Limited Quantities: 5 kg

Shipping Name: TOXIC SOLID, INORGANIC, N.O.S.(contains sodium nitroprusside)

Section 15 - REGULATORY INFORMATION

sodium nitroprusside (CAS: 14402-89-2, 13755-38-9) is found on the following regulatory lists;
"Canada Domestic Substances List (DSL)", "US DOE Temporary Emergency Exposure Limits (TEELs)", "US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE
- Inhalation and/or skin contact may produce health damage*.
- Cumulative effects may result following exposure*.
- May produce skin discomfort*.
 * (limited evidence).

Ingredients with multiple CAS Nos

<table>
<thead>
<tr>
<th>Ingredient Name</th>
<th>CAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>sodium nitroprusside</td>
<td>14402-89-2, 13755-38-9</td>
</tr>
</tbody>
</table>

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Dec-21-2008
Print Date: Apr-21-2010