Dihydroergotamine mesylate

Material Safety Data Sheet

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Dihydroergotamine mesylate

STATEMENT OF HAZARDOUS NATURE

NFPA

SUPPLIER
Company: Santa Cruz Biotechnology, Inc.
Address:
2145 Delaware Ave
Santa Cruz, CA 95060
Telephone: 800.457.3801 or 831.457.3800
Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305
Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Toxicity</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Body Contact</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Reactivity</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

RISK
May cause harm to the unborn child.
Possible risk of impaired fertility.
Harmful by inhalation, in contact with skin and if swallowed.
Irritating to eyes, respiratory system and skin.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED
- Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.
- The ergot alkaloids are a group of biogenic amines which act as agonists on alpha-type adrenergic receptors. Symptoms of acute poisoning due to ergot are attributable to central system stimulation and include nausea, vomiting, diarrhoea, thirst, coldness of the skin, pruritus, weak pulse, numbness and tingling of the extremities, tachycardia, mydriasis, confusion and unconsciousness. Certain factors may predispose individuals to ergotism - these may include Vitamin A and/or C deficiency, malnutrition, hepatic and renal disease and sepsis. Consumption of contaminated grain and grain products, containing ergot alkaloids, has produced poisoning of epidemic proportions and still occurs. Intense peripheral vasoconstriction of the extremities may produce gangrene and has inspired the name "St. Anthony's fire". Two forms of epidemic toxicity have been described - these rarely occur together.
 - A gangrenous form is characterised by agonising pain in the extremities followed by dry gangrene of the peripheral parts. Initial signs and symptoms include calf pain, cool extremities and paraesthesias (especially of the extremities). Anginal pain may be elicited in those with coronary insufficiency. Foot drop and transient monocular blindness may also occur.
 - A rarer nervous type of epidemic toxicity described as "convulsive syndrome" gives rise to paroxysmal elephitom convulsions. Other symptoms include vertigo, headache, tinnitus, sexual disturbances, hallucinations, muscle spasm, gastrointestinal upset and convulsions. Ergotamine, a member of the group, is a potent oxytocic, producing abortion or foetal harm in pregnant women. In large repeated doses ergotamine produces all the symptoms of ergot poisoning; fatalities have occurred. Different ergot alkaloids and their derivatives have varying degrees of alpha-adrenergic blocking activity; dihydrogenated alkaloids are potent blocking agents while compounds which lack a polypeptide side-chain in their structure possess little activity.

 However, it is now accepted that the varied and complex pharmacology of these alkaloids derives from their actions as partial agonists and antagonists at dopamine and serotonin receptors as well as alpha-adrenoreceptors. The most important effects are due to actions on the central nervous system and direct stimulation of the smooth muscle of the uterus and blood vessels. Differences between individual compounds may be, in part, due to varying effects at different receptors whilst the range of effects may also be dose-dependent; the physiological state of the individual may also be a factor the expression of these effects.

NOTE: The levo-isomer of the ergot alkaloids (names ending in "ine" versus "inine") is generally the highly active form.

EYE
- This material can cause eye irritation and damage in some persons.

SKIN
- Skin contact with the material may be harmful; systemic effects may result following absorption.
- This material can cause inflammation of the skin on contact in some persons.
- The material may accentuate any pre-existing dermatitis condition.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED
- Inhalation of dusts, generated by the material, during the course of normal handling, may be harmful.
- This material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS
- Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Ample evidence exists, from results in experimentation, that developmental disorders are directly caused by human exposure to the material. Ample evidence from experiments exists that there is a suspicion this material directly reduces fertility. There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. There is some evidence that inhaling this product is more likely to cause a sensitization reaction in some persons compared to the general population.
- Chronic "ergotism" (resulting from therapeutic overdose) produces circulatory disturbances due to vasoconstriction and formation of thrombi. Initial symptoms include coldness of the skin, severe muscle pain, and vascular stasis resulting in dry peripheral gangrene. Anginal pain, bradycardia and hypotension or hypertension, may also occur. Other signs include headache, nausea, vomiting, diarrhoea, dizziness, weakness of the legs, miosis, confusion, drowsiness, paralysis of one side of the body (hemiplegia) and convulsions. Interaction with the 5-HT2B serotonin receptors of cardiac myocytes, may cause proliferative heart valve disease. Alkyl-substituted sulfonates are thought to induce genetic mutations in cells.
Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>NAME</th>
<th>CAS RN</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>dihydroergotamine methanesulfonate</td>
<td>6190-39-2</td>
<td>>98</td>
</tr>
</tbody>
</table>

Section 4 - FIRST AID MEASURES

SWALLOWED
- IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.
- Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:
 - For advice, contact a Poisons Information Center or a doctor.
 - Urgent hospital treatment is likely to be needed.
 - If conscious, give water to drink.
 - INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

NOTE: Wear a protective glove when inducing vomiting by mechanical means.
- In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.
- If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist.
- If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS.

EYE
- If this product comes in contact with the eyes:
 - Wash out immediately with fresh running water.
 - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
 - If pain persists or recurs seek medical attention.
 - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN
- If skin contact occurs:
 - Immediately remove all contaminated clothing, including footwear
 - Flush skin and hair with running water (and soap if available).
 - Seek medical attention in event of irritation.

INHALED
- If fumes or combustion products are inhaled remove from contaminated area.
 - Lay patient down. Keep warm and rested.
 - Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
 - Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained.
 - Perform CPR if necessary.
 - Transport to hospital, or doctor, without delay.

NOTES TO PHYSICIAN
- Treat symptomatically.
 - Ergot alkaloids are incompletely absorbed from the gastrointestinal tract and are probably metabolised in the liver. They are mainly excreted in the bile with small amounts appearing in the urine. For acute ergot intoxication:
 - the stomach should be emptied by aspiration and lavage.
 - amyl nitrate inhalations may be given.
 - nausea and vomiting may be controlled by intramuscular injections of 25-50 mg chlorpromazine or a comparable dose of a related phenothiazine.

MARTINDALE: The Extra Pharmacopoeia, 27th Ed.
Peripheral and coronary vasoconstriction due to ergot alkaloids may be antagonised by nitrates or papaverine and short acting barbiturates are indicated. Administration of sodium nitroprusside, anti-coagulants and dextran, with continuous monitoring of blood pressure, proved beneficial in one case of overdose due to misuse of ergotamine. GOSSELIN, SMITH HODGE: Clinical Toxicology of Commercial Products, 5th Ed.
Caffeine increase the rate and completeness of intestinal absorption of ergot alkaloids, perhaps by increasing the dissolution rate in the alkaline pH of the intestine. ELLENHORN, M.J., and Barceloux D.G.; Medical Toxicology - Diagnosis and Treatment of Human Poisoning. 1988.

Section 5 - FIRE FIGHTING MEASURES

Vapour Pressure (mmHG): Negligible
Upper Explosive Limit (%): Not available
Specific Gravity (water=1): Not available
Lower Explosive Limit (%): Not available

EXTINGUISHING MEDIA
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog - Large fires only.

FIRE FIGHTING
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Use fire fighting procedures suitable for surrounding area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS
- Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), sulfur oxides (SOx), other pyrolysis products typical of burning organic material. May emit poisonous fumes.

FIRE INCOMPATIBILITY
- Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION
Glasses:
Gloves:
Respirator:
Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS
- Clean up waste regularly and abnormal spills immediately.
- Avoid breathing dust and contact with skin and eyes.
- Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust.
- Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- Dampen with water to prevent dusting before sweeping.
- Place in suitable containers for disposal.

MAJOR SPILLS
- Clear area of personnel and move upwind.
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labeled containers for recycling.
- Neutralize/decontaminate residue.
- Collect solid residues and seal in labeled drums for disposal.
- Wash area and prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
● If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL

![Diagram of Protective Action Zone]

- Isolation Distance: 25 meters
- Downwind Protection Distance: 250 meters

From IERG (Canada/Australia)

FOOTNOTES

1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.

2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.

3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.

4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder.

6 IERG information is derived from CANUTEC - Transport Canada.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

- Glass container.
- Lined metal can, Lined metal pail/drum
- Plastic pail
- Polyliner drum
- Packing as recommended by manufacturer.
- Check all containers are clearly labeled and free from leaks.

For low viscosity materials

- Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.

For materials with a viscosity of at least 2680 cSt (23 deg. C) and solids (between 15 C deg. and 40 deg C.):

- Removable head packaging;
- Cans with friction closures and
- Low pressure tubes and cartridges may be used.

- Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages *. - In addition, where inner packagings are glass and contain liquids of packing group I and II there must be sufficient inert absorbent to absorb any spillage *. - * unless the outer packaging is a close fitting molded plastic box and the substances are not incompatible with the plastic.

STORAGE REQUIREMENTS

- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

| X | X | + | X | X | + |

X: Must not be stored together
O: May be stored together with specific precautions
+: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

The following materials had no OELs on our records:

MATERIAL DATA
DIHYDROERGOTAMINE METHANESULFONATE:

- Airborne particulate or vapor must be kept to levels as low as is practicably achievable given access to modern engineering controls and monitoring hardware. Biologically active compounds may produce idiosyncratic effects which are entirely unpredictable on the basis of literature searches and prior clinical experience (both recent and past).

PERSONAL PROTECTION
Consult your EHS staff for recommendations

EYE
- For laboratory, larger scale or bulk handling or where regular exposure in an occupational setting occurs:
 - Chemical goggles
 - Face shield. Full face shield may be required for supplementary but never for primary protection of eyes
 - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59].

HANDS/FEET
- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
 - frequency and duration of contact,
 - chemical resistance of glove material,
 - glove thickness and
 - dexterity
- Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
 - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
 - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.
- Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
 - Rubber gloves (nitrile or low-protein, powder-free latex). Employees allergic to latex gloves should use nitrile gloves in preference.
 - Double gloving should be considered.
 - PVC gloves.
 - Protective shoe covers.
 - Head covering.

OTHER
- For quantities up to 500 grams a laboratory coat may be suitable.
- For quantities up to 1 kilogram a disposable laboratory coat or coverall of low permeability is recommended. Coveralls should be buttoned at collar and cuffs.
- For quantities over 1 kilogram and manufacturing operations, wear disposable coverall of low permeability and disposable shoe covers.
- For manufacturing operations, air-supplied full body suits may be required for the provision of advanced respiratory protection.
- Eye wash unit.
- Ensure there is ready access to an emergency shower.
- For Emergencies: Vinyl suit

RESPIRATOR
- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
 - The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker’s exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory. These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

RESPIRATOR

<table>
<thead>
<tr>
<th>Protection Factor</th>
<th>Half-Face Respirator</th>
<th>Full-Face Respirator</th>
<th>Powered Air Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 x PEL</td>
<td>P1</td>
<td>-</td>
<td>PAPR-P1</td>
</tr>
<tr>
<td></td>
<td>Air-line*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>50 x PEL</td>
<td>Air-line**</td>
<td>P2</td>
<td>PAPR-P2</td>
</tr>
<tr>
<td>100 x PEL</td>
<td>-</td>
<td>P3</td>
<td>-</td>
</tr>
<tr>
<td>100* x PEL</td>
<td>-</td>
<td>Air-line*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Air-line**</td>
<td>-</td>
<td>PAPR-P3</td>
</tr>
</tbody>
</table>

* - Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:
- Class 1 low to medium absorption capacity filters.
- Class 2 medium absorption capacity filters.
- Class 3 high absorption capacity filters.
- PAPR Powered Air Purifying Respirator (positive pressure) cartridge.
Solubilities: alcohol 1:90; chloroform 1:175; ether 1:2600.

Appearance

Colourless crystalline solid or white to almost white or faintly red crystalline powder with slight odour; does not mix well with water (1:125). Solubilities: alcohol 1:90; chloroform 1:175; ether 1:2600.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

Solid.

Does not mix with water.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Divided solid</td>
</tr>
<tr>
<td>Melting Range (°F)</td>
<td>446 - 455</td>
</tr>
<tr>
<td>Boiling Range (°F)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Flash Point (°F)</td>
<td>Not available</td>
</tr>
<tr>
<td>Decomposition Temp (°F)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Autoignition Temp (°F)</td>
<td>Not available</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not available</td>
</tr>
<tr>
<td>Volatile Component (%vol)</td>
<td>Negligible</td>
</tr>
</tbody>
</table>

Viscosity

Not Applicable

Solubility in water (g/L)

Partly miscible

pH (1% solution)

4.4-5.4 (0.1% sol)

pH (as supplied)

Not applicable

Vapour Pressure (mmHG)

Negligible

Specific Gravity (water=1)

Not applicable

Relative Vapor Density (air=1)

Not applicable

Evaporation Rate

Not Applicable

ENGINEERING CONTROLS

Enclosed local exhaust ventilation is required at points of dust, fume or vapor generation. HEPA terminated local exhaust ventilation should be considered at point of generation of dust, fumes or vapors. Barrier protection or laminar flow cabinets should be considered for laboratory scale handling.

The need for respiratory protection should also be assessed where incidental or accidental exposure is anticipated: Dependent on levels of contamination, PAPR, full face air purifying devices with P2 or P3 filters or air supplied respirators should be evaluated. Fume-hoods and other open-face containment devices are acceptable when face velocities of at least 1 m/s (200 feet/minute) are achieved. Partitions, barriers, and other partial containment technologies are required to prevent migration of the material to uncontrolled areas. For non-routine emergencies maximum local and general exhaust are necessary. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant: Air Speed:

- solvent, vapors, etc. evaporating from tank (in still air) 0.25-0.5 m/s (50-100 ft/min.)
- aerosols, fumes from pouring operations, intermittent container filling, low speed conveyor transfers (released at low velocity into zone of active generation) 0.5-1 m/s (100-200 ft/min.)
- direct spray, drum filling, conveyor loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) 1-2.5 m/s (200-500 ft/min.)

Within each range the appropriate value depends on:

1: Room air currents minimal or favourable to capture 1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only. 2: Contaminants of high toxicity
3: Intermittent, low production. 3: High production, heavy use
4: Large hood or large air mass in motion 4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2.5 m/s (200-500 ft/min.) for extraction of gases discharged 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.
Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY
- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY
- Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

DIHYDROERGOTAMINE METHANESULFONATE

TOXICITY AND IRRITATION
- unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

<table>
<thead>
<tr>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral (rat) LD50: >2000 mg/kg</td>
<td>Nil Reported</td>
</tr>
<tr>
<td>Oral (mouse) LD50: >2000 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Oral (rabbit) LD50: >1000 mg/kg</td>
<td></td>
</tr>
</tbody>
</table>

- Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

DIHYDROERGOTAMINE METHANESULFONATE:
- DO NOT discharge into sewer or waterways.

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions
All waste must be handled in accordance with local, state and federal regulations.
- Punctures containers to prevent re-use and bury at an authorized landfill.
Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate:
 - Reduction
 - Reuse
 - Recycling
 - Disposal (if all else fails)
This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.
- DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.
 - Recycle wherever possible.
 - Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
 - Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
 - Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION
DOT:

<table>
<thead>
<tr>
<th>Symbols:</th>
<th>None</th>
<th>Hazard class or Division:</th>
<th>6.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification Numbers:</td>
<td>UN1544</td>
<td>PG:</td>
<td>III</td>
</tr>
<tr>
<td>Label Codes:</td>
<td>6.1</td>
<td>Special provisions:</td>
<td>IIB, IP3, T1, TP33</td>
</tr>
<tr>
<td>Quantity Limitations: Cargo aircraft only:</td>
<td>200 kg</td>
<td>Vessel stowage: Location:</td>
<td>A</td>
</tr>
<tr>
<td>Vessel stowage: Other:</td>
<td>None</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hazardous materials descriptions and proper shipping names:
Alkaloids, solid, n.o.s. or Alkaloid salts, solid, n.o.s. poisonous

Air Transport IATA:

ICAO/IATA Class:	6.1	ICAO/IATA Subrisk:	None
UN/ID Number:	1544	Packing Group:	III
Special provisions:	A3		

Shipping Name: ALKALOID SALTS, SOLID, N.O.S. *(CONTAINS DIHYDROERGOTAMINE METHANESULFONATE)

Maritime Transport IMDG:

IMDG Class:	6.1	IMDG Subrisk:	None
UN Number:	1544	Packing Group:	III
EMS Number:	F-A , S-A	Special provisions:	43 223 274
Limited Quantities:	5 kg		

Shipping Name: ALKALOIDS, SOLID, N.O.S. or ALKALOIDS SALTS, SOLID, N.O.S.(contains dihydroergotamine methanesulfonate)

Section 15 - REGULATORY INFORMATION

REGULATIONS
dihydroergotamine methanesulfonate (CAS: 6190-39-2) is found on the following regulatory lists;

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Cumulative effects may result following exposure*.
- Limited evidence of a carcinogenic effect*.
- Possible respiratory sensitizer*.
- * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at:
The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Apr-6-2009
Print Date: Sep-4-2010