Emamectin B1 Benzoate

Company: Santa Cruz Biotechnology, Inc. Address: 2145 Delaware Ave Santa Cruz, CA 95060 Telephone: 800.457.3801 or 831.457.3800 Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305 Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

■ Dangerous POISON. Available ONLY for industrial and manufacturing purposes. To be used by or in accordance with directions of accredited pest control officers. Operators to be trained in procedures for safe use of material. Non-systemic insecticide which penetrates leaf tissues by translaminar movement. Paralyses the lepidoptera, which stop feeding within hours of ingestion, and die 2-4 days later.

SYNONYMS

C49-H77-N-O13, C49-H77-N-O13, "(4*R)-4"" -deoxy-4"" -(methylamino)avermectin B1 benzoate", "avermectin B1, 4' - deoxy-4' -(methylamino), (4' R)-, benzoate (salt)", "avermectin B1b, "nixture of benzoate salts of", "emamectin B1a and emamectin B1b," "nixture of emzoate', salts, "a mixture containing 90% of (10E, 14E, 16E, 22Z)-(1R, 4S, 5?S, 6S, 6?R, 8R, ", "12S, 13S, 20R, 21R, 24S)-67-[(S)-sec-butyl]-21, 24-dihydroxy-5?, 11, 13, ", "22-tetramethyl-2-oxo-3, 7, 19-trioxatetracyclo[15.6.1.14, 8.020, ", "24]pentacosa-10, 14, 16, 22-tetraene-6-spiro-2?-(5?, 6?-dihydro-2?H-", "pyran)-12-yl 2, 6dideoxy-3-O-methyl-4-O-(2, 4, 6-trideoxy-3-O-", methyl-4-methylamino-alpha-L-lyxo-hexopyranosyl)-alpha-L-arabino, "hexopyranoside benzoate and 10% of (10E, 14E, 16E, 22Z)-(1R, 4S, 5?S, 6S, 6?R, ", "8R, 12S, 13S, 20R, 21R, 24S)-21, 24-dihydroxy-67-isopropyl-5?, 11, 13, 22-", "tetramethyl-2-oxo-3, 7, 19-trioxatetracyclo[15.6.1.14, 8.020, 24]pentacosa-", "10, 14, 16, 22-tetraene-6-spiro-2?-(5?, 6?-dihydro-2?H-pyran)-12-yl 2, ", "6-dideoxy-3-O-methyl-4-0-(2, 4, 6-trideoxy-3-O-methyl-4-", methylamino-alpha-L-lyxo-hexopyranosyl)-alpha-L-arabino-hexopyranosyl)-alpha-L-arabino-hexopyranosyl)-alpha-L-arabino-hexopyranosyl-6?, [S)-sec-butyl]-21, 24-dihydro-2?H-", "pyran)-12-yl 2, % 6:dideoxy-3-O-methyl-4-0-(2, 4, 6-trideoxy-3-O-methyl-4-", methylamino-alpha-L-lyxo-hexopyranosyl)-alpha-L-arabino-hexopyranosyl)-alpha-L-arabino-hexopyranosyl)-alpha-L-arabino-hexopyranosyl)-alpha-L-arabino-, "hexopyranosyl)-alpha-L-arabino-hexopyranosyl)-alpha-L-arabino-hexopyranosyl)-alpha-L-arabino-hexopyranosyl)-alpha-L-arabino-hexopyranosyl)-alpha-L-arabino-hexopyranosyl)-alpha-L-ixo-hexopyranosyl)-alpha-L-arabino-hexopyranosyl)-alpha-L-arabino-hexopyranosyl)-alpha-L-arabino-hexopyranosyl)-alpha-L-arabino-hexopyranosyl)-alpha-L-arabino-hexopyranosyl)-alpha-L-arabino-hexopyranosyl)-alpha-L-arabino-hexopyranosyl)-alpha-L-arabino-hexopyranosyl)-alpha-L-arabino-hexopyranosyl)-alpha-L-arabino-hexopyranosyl)-alpha-L-arabino-hexopyranosyl)-alpha-L-arabino-hexopyr

"6]benzodioxacyclooctadecin-13, 2' -[2H]pyran]-7-yl 2, 6-dideoxy-3-O-", "methyl-4-O-(2, 4, 6-trideoxy-3-O-methyl-4-methylamino-a-L-lyxo-", "hexapyranosyl)-a-L-arabino-hexapyranoside and 10% (2aE, 4E, 8E)-(5' S, 6S, ", "6' R, 7S, 11R, 13S, 15S, 17aR, 20R, 20aR, 20bS)-5', 6, 6', 7, 10, 11, 14, 15, ", "17a, 20, 20a, 20b-dodecahydro-20, 20b-dihydroxy-6' - isopropyl-5', 6, 8, ", "19-tetramethyl-17-oxospiro[11, 15-methano-2H, 13H, 17H-furo[4, 3, 2-", "pq][2, 6]benzodioxacyclooctadecin-13, 2' -[2H]pyran]-7-yl 2, 6-dideoxy-3-", "O-methyl-4-O-(2, 4, 6-trideoxy-3-O-methyl-4-methylamino-a-L-lyxo-", hexapyranosyl)-a-L-arabino-hexapyranoside, "MK 244", "MK 0244", Proclaim, "pesticide/ insecticide"

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW RISK

Toxic if swallowed. Irritating to eyes. Very toxic to aquatic organisms. Toxic to bees. May cause long-term adverse effects in the environment.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

• Toxic effects may result from the accidental ingestion of the material; animal experiments indicate that ingestion of less than 40 gram may be fatal or may produce serious damage to the health of the individual.

• There have been several reports of acute human exposure incidents with abamectin containing formulations. Abamectin is a mixture of avermectins. Clinical symptoms of severe abamectin intoxication include mydriasis, sedation, emesis, tremors, convulsions, coma and death. One successful suicide attempt was reported (estimated lethal doses 3.6 to 4.5 grams of abamectin).

Systemic reactions in humans may include fever, rash and lymph-node pain or swelling. Ocular reactions have been minimal. In monkeys, emesis occurred following a single oral dosage of 2 mg/kg; mydriasis was seen at 24 mg/kg indicating a doseresponse curve is flatter in monkeys than in rodents.

• Macrolides comprise a large group of antibiotics derived from Streptomyces spp. having in common a macrocyclic lactone ring to which one or more sugars are attached. They are all weak bases. The most common side effect produced by the family of macrolide antibiotics is gastrointestinal discomfort. Supra-infections may occur although these are rare. Several macrolides produced allergic sensitization but, again, these are rare. Symptoms include watery eyes, shortness of breath, nasal congestion, choking, coughing and wheezing. Allergic skin reactions have also occurred. Exposure to at least one member of the family, erythromycin, at high concentrations, has produced reversible deafness (ototoxicity). Systemic reactions including fever, rash, and lymph-node pain or swelling have been produced by the avermectin group. Ivermectin has produced ataxia (incoordination), lethargy, bradypnea (slowed breathing), vomiting, mydriasis (dilated pupils), sedation, tremors and death in animals. The avermectin group (anthelmintics, insecticides and acaricides) mediate the transmission of gamma-butyric acid (GABA), an inhibitory neurotransmitter, in mammals thus causing paralysis. Hepatotoxic effects with transient disturbances and jaundice have resulted from the use of oleandomycin. Transient alterations in heart rate/ rhythm have also been produced by several members of the family (notably tilmicosin). Heart muscle degeneration, characterized by small areas of cell death have also been reported in animals exposed to tilmicosin. Cross-resistance is often observed between the macrolide, lincosamide and streptogramin group of antibiotics.

EYE

This material can cause eye irritation and damage in some persons.

SKIN

Skin contact with the material may produce toxic effects; systemic effectsmay result following absorption.

■ The material is not thought to be a skin irritant (as classified using animal models). Abrasive damage however, may result from prolonged exposures. Good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.

■ In rats and rabbits, dermal exposure to abamectin, under occluded conditions for 24 hours, at a dosage of 300 and 2000 mg/kg, respectively, produced tremors, ataxia, decreased activity, weight loss and death.

Dermal penetration of abamectin in monkeys was determined to be less than 1% Abamectin did not show potential to produce skin sensitisation in the guinea pig maximisation test.

Open cuts, abraded or irritated skin should not be exposed to this material.

• Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

• The material is not thought to produce respiratory irritation (as classified using animal models). Nevertheless inhalation of dusts, or fume, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress.

■ Inhalation of dusts, generated by the material during the course of normal handling, may produce severe damage to the health of the individual. Relatively small amounts absorbed from the lungs may prove fatal.

• Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

■ There were no deaths recorded in rats inhaling 5.73 mg/l abamectin (avermectins); the animals also exhibited normal behaviour and there were no changes in body weights.

■ Inhalation of dusts, generated by the material during the course of normal handling, may produce serious damage to the health of the individual.

CHRONIC HEALTH EFFECTS

■ Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by

particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.

Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

Section 4 - FIRST AID MEASURES

SWALLOWED

- Give a slurry of activated charcoal in water to drink. NEVER GIVE AN UNCONSCIOUS PATIENT WATER TO DRINK.
- At least 3 tablespoons in a glass of water should be given.
- Although induction of vomiting may be recommended (IN CONSCIOUS PERSONS ONLY), such a first aid measure is
 dissuaded because to the risk of aspiration of stomach contents. (i) It is better to take the patient to a doctor who can
 decide on the necessity and method of emptying the stomach. (ii) Special circumstances may however exist; these include
 non- availability of charcoal and the ready availability of the doctor.

NOTE: If vomiting is induced, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. NOTE: Wear protective gloves when inducing vomiting.

- REFER FOR MEDICAL ATTENTION WITHOUT DELAY.
- In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.
- If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist.
- If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS.

(ICSC20305/20307).

EYE

- If this product comes in contact with the eyes:
- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Continue flushing until advised to stop by the Poisons Information Center or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin or hair contact occurs:
- Quickly but gently, wipe material off skin with a dry, clean cloth.
- Immediately remove all contaminated clothing, including footwear.
- Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Center.
- Transport to hospital, or doctor.

INHALED

- · If fumes or combustion products are inhaled remove from contaminated area.
- · Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.

• Transport to hospital, or doctor, without delay.

NOTES TO PHYSICIAN

Treat symptomatically.

For abamectin (avermectins):

Toxicity following accidental ingestion may be minimised by emesis-induction within one half hour of exposure. Since abamectin is thought to bind to glutamate-gated chloride ion channels, it is probably wise to avoid drugs that also interact with other ligand-gated chloride channels, including those that enhance GABA activity in patients with potentially toxic abamectin exposure

Avoid drugs that enhance GABA activity (barbiturate, benzodiazepines, valproic acid, etc.).

for poisons (where specific treatment regime is absent):

_

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- Monitor and treat, where necessary, for pulmonary edema .
- Monitor and treat, where necessary, for shock.
- Anticipate seizures
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.

ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use.
- · Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary edema.
- Hypotension with signs of hypovolemia requires the cautious administration of fluids. Fluid overload might create complications.
- Treat seizures with diazepam.
- · Proparacaine hydrochloride should be used to assist eye irrigation.
- BRONSTEIN, A.C. and CURRANCE, P.L.

EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994.

Section 5 - FIRE FIGHTING MEASURES

Vapour Pressure (mmHG):	Negligible
Upper Explosive Limit (%):	Not Available
Specific Gravity (water=1):	Not Available
Lower Explosive Limit (%):	Not Available

EXTINGUISHING MEDIA

- ● Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

FIRE FIGHTING

- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Use fire fighting procedures suitable for surrounding area.
- DO NOT approach containers suspected to be hot.
- · Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

• Combustible solid which burns but propagates flame with difficulty.

- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

FIRE INCOMPATIBILITY

Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses: Gloves: Respirator: Particulate

MINOR SPILLS

- Environmental hazard contain spillage.
- · Clean up waste regularly and abnormal spills immediately.
- Avoid breathing dust and contact with skin and eyes.
- Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust.
- Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- Dampen with water to prevent dusting before sweeping.
- Place in suitable containers for disposal.

MAJOR SPILLS

- Environmental hazard contain spillage.
- Clear area of personnel and move upwind.
- Alert Emergency Responders and tell them location and nature of hazard.
- · Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- · Collect recoverable product into labeled containers for recycling.
- Neutralize/decontaminate residue.
- Collect solid residues and seal in labeled drums for disposal.
- · Wash area and prevent runoff into drains.
- · After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- · If contamination of drains or waterways occurs, advise emergency services.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure. AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects

or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- · Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- · Avoid physical damage to containers.
- · Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.
- · Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- Do NOT cut, drill, grind or weld such containers
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

- Glass container.
- · Lined metal can, Lined metal pail/drum
- Plastic pail
- Polyliner drum
- Packing as recommended by manufacturer.
- Check all containers are clearly labeled and free from leaks.

For low viscosity materials

- Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.
- For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.):
- Removable head packaging;

- · Cans with friction closures and
- low pressure tubes and cartridges may be used.

- Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages * . - In addition, where inner packagings are glass and contain liquids of packing group I and II there must be sufficient inert absorbent to absorb any spillage * - * unless the outer packaging is a close fitting molded plastic box and the substances are not incompatible with the plastic. All inner and sole packagings for substances that have been assigned to Packaging Groups I or II on the basis of inhalation toxicity criteria, must be hermetically sealed

STORAGE REQUIREMENTS

- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

X: Must not be stored together

O: May be stored together with specific preventions

+: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

The following materials had no OELs on our records

• emamectin benzoate: CAS:155569-91-8 CAS:137512-74-4

MATERIAL DATA

- EMAMECTIN BENZOATE:
- For abamectin (avermectins)
- CEL TWA: 0.04 mg/m3 [Manufacturer]

The acceptable daily intake (ADI) of 0.4 mg/day was derived using an NOAEL of 0.25 mg/kg/day from oral toxicity studies in dogs, adjusting for body weight (50 kg) and by applying a composite uncertainty factor of 30 to account for interindividual variability, interspecies extrapolation and the severity of the critical endpoint (neurotoxicity). The recommended exposure standard and a wipe test criteria of 0.4 mg/100 cm2 were derived using the ADI.

Airborne particulate or vapor must be kept to levels as low as is practicably achievable given access to modern engineering controls and monitoring hardware. Biologically active compounds may produce idiosyncratic effects which are entirely unpredictable on the basis of literature searches and prior clinical experience (both recent and past).

PERSONAL PROTECTION

Consult your EHS staff for recommendations **EYE**

- _ .
 - Chemical protective goggles with full seal
- Shielded mask (gas-type)
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]

HANDS/FEET

- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- Rubber gloves (nitrile or low-protein, powder-free latex). Employees allergic to latex gloves should use nitrile gloves in preference.
- Double gloving should be considered.
- PVC gloves.
- Protective shoe covers.

Head covering.

OTHER

- For quantities up to 500 grams a laboratory coat may be suitable.
- For quantities up to 1 kilogram a disposable laboratory coat or coverall of low permeability is recommended. Coveralls should be buttoned at collar and cuffs.
- For quantities over 1 kilogram and manufacturing operations, wear disposable coverall of low permeability and disposable shoe covers.
- For manufacturing operations, air-supplied full body suits may be required for the provision of advanced respiratory protection.
- Eye wash unit.
- Ensure there is ready access to an emergency shower.
- For Emergencies: Vinyl suit
- Handle extremely poisonous natural toxins in closed systems such as glove bags or other enclosures, to avoid accidental contact. Workers should wear complete disposable clothing including shoe covers, gloves and mask with an independent air supply.
- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity
 information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not
 subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered,
 positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory . These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

RESPIRATOR

Protection Factor Half-Face Respirator Full-Face Respirator Powered Air Respirator 10 x PEL P1 PAPR-P1

	riun rube respirator	i un i uoc i teophutoi	r owered / in ricophator
10 x PEL	P1	-	PAPR-P1
	Air-line*	-	-
50 x PEL	Air-line**	P2	PAPR-P2
100 x PEL	-	P3	-
		Air-line*	-
		Air lino**	

* - Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.

Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.

Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

For potent pharmacological agents:

Powders

To prevent contamination and overexposure, no open handling of powder should be allowed.

- Powder handling operations are to be done in a powders weighing hood, a glove box, or other equivalent ventilated containment system.
- In situations where these ventilated containment hoods have not been installed, a non-ventilated enclosed containment hood should be used.
- Pending changes resulting from additional air monitoring data, up to 300 mg can be handled outside of an enclosure provided that no grinding, crushing or other dust-generating process occurs.

- An air-purifying respirator should be worn by all personnel in the immediate area in cases where non-ventilated containment is used, where significant amounts of material (e.g., more than 2 grams) are used, or where the material may become airborne (as through grinding, etc.).
- · Powder should be put into solution or a closed or covered container after handling.
- If using a ventilated enclosure that has not been validated, wear a half-mask respirator equipped with HEPA cartridges until the enclosure is validated for use.

Solutions Handling:

- Solutions can be handled outside a containment system or without local exhaust ventilation during procedures with no
 potential for aerosolisation. If the procedures have a potential for aerosolisation, an air-purifying respirator is to be worn by
 all personnel in the immediate area.
- Solutions used for procedures where aerosolisation may occur (e.g., vortexing, pumping) are to be handled within a
 containment system or with local exhaust ventilation.
- In situations where this is not feasible (may include animal dosing), an air-purifying respirator is to be worn by all personnel in the immediate area. If using a ventilated enclosure that has not been validated, wear a half-mask respirator equipped with HEPA cartridges until the enclosure is validated for use.
- Ensure gloves are protective against solvents in use.
- Unless written procedures, specific to the workplace are available, the following is intended as a guide:
- For Laboratory-scale handling of Substances assessed to be toxic by inhalation. Quantities of up to 25 grams may be handled in Class II biological safety cabinets *; Quantities of 25 grams to 1 kilogram may be handled in Class II biological safety cabinets* or equivalent containment systems Quantities exceeding 1 kg may be handled either using specific containment, a hood or Class II biological safety cabinet*,
- HEPA terminated local exhaust ventilation should be considered at point of generation of dust, fumes or vapors.
- The need for respiratory protection should also be assessed where incidental or accidental exposure is anticipated. Dependent on levels of contamination, PAPR, full face air purifying devices with P2 or P3 filters or air supplied respirators should be evaluated. When handling: Quantities of up to 25 grams, an approved respirator with HEPA filters or cartridges should be considered Quantities of 25 grams to 1 kilogram, a half-face negative pressure, full negative pressure, or powered helmet-type air purifying respirator should be considered. Quantities in excess of 1 kilogram, a full face negative pressure, helmet-type air purifying, or supplied air respirator should be considered.

Written procedures, specific to a particular work-place, may replace these recommendations

* For Class II Biological Safety Cabinets, Types B2 or B3 should be considered. Where only Class I, open fronted Cabinets are available, glove panels may be added, Laminar flow cabinets do not provide sufficient protection when handling these materials unless especially designed to do so.

Air should be supplied by an independent system.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Toxic or noxious vapors/ gas.			
State	Divided Solid	Molecular Weight	886 (B1a);872 (B1b)
Melting Range (°F)	285.8- 294.8	Viscosity	Not Applicable
Boiling Range (°F)	Not Applicable	Solubility in water (g/L)	Partly Miscible
Flash Point (°F)	Not Available	pH (1% solution)	Not Applicable
Decomposition Temp (°F)	Not Available	pH (as supplied)	Not Applicable
Autoignition Temp (°F)	Not Available	Vapour Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not Available	Specific Gravity (water=1)	Not Available
Lower Explosive Limit (%)	Not Available	Relative Vapor Density (air=1)	Not Applicable
Volatile Component (%vol)	Negligible	Evaporation Rate	Not Applicable

APPEARANCE

Light beige powder; does not mix well with water.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- · Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

emamectin benzoate

TOXICITY AND IRRITATION

unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.
 TOXICITY
 IRRITATION

Oral (Rat) LD50: 76 mg/kg

Skin : Mild

Oral (Mouse) LD50: 22 mg/kg

Dermal (Rabbit) LD50: >2000 mg/kg *

Inhalation (Rat) LC50: 2.12 mg/m³/4h

For avermectins:

Technical avermectin exhibits high mammalian acute toxicity. It is not considered to be mutagenic and does not sensitise skin. It is not readily absorbed by mammals and the majority of the residue is excreted in the faeces within 2 days. The 24-month rat chronic feeding/ oncogenicity study and 94-week mouse chronic toxicity oncogenicity study were negative for oncogenic potential. The results of a series of developmental toxicity studies (rat, rabbit, mouse) have been evaluated and showed that avermectin B1 produces developmental toxicity (cleft palate) in the CF1 mouse. Toxicology data were also evaluated for the delta-8,9-isomer of avermectin B1 which is a plant photodegradate that can range between 5 and 20 percent of the residue on/in cottonseed. This isomer possesses avermectin-like toxicological activity. It was concluded that the delta 8,9-isomer also produces developmental toxicity (cleft palate) in mice, but not in rats. In addition to avermectin and its delta 8,9-isomer. toxicology data were also evaluated for the "polar degradates" of avermectin, which constitute a large percentage (up to 70%) of the total residue on cottonseed. Review of the toxicology data indicated that these polar degradates do not possess avermectin-like toxicological activity and for this reason need not be included in the tolerance expression for residues in/on cottonseed.

Abamectin (a mixture of avermectin isomers) is a reproductive toxin in laboratory animals at doses which are acutely toxic to the mother. In development toxicity studies with abamectin, cleft palates were seen in mice and rabbits and clubbing of the forepaws was seen in rabbits. The no-observed-adverse-effect-level (NOAEL) for maternal and developmental toxicity in rabbits was 1 mg/kg/day. In CF-1 mice, a strain recognised to be particularly sensitive to avermectins, the NOAEL for maternal toxicity was 0.05 mg/kg/day and the NOAEL for malformations was 0.2 mg/kg/day. Studies show that the sensitivity of a subpopulation of CF-1 mice to avermectins is due to the absence of a transmembrane P-glycoprotein, a significant component of the blood-brain interface that normally acts as a non-selective protective barrier in a wide range of species including humans. CF-1 mice are therefore an unlikely candidate for assessing human risk. No evidence of developmental toxicity was seen in oral studies in rats in the absence of maternal toxicity (NOAEL = 1.6 mg/kg/day). In a rat multigenerational reproduction study, pup toxicity and deaths were seen at 0.4 mg/kg/day (NOAEL = 0.12 mg/kg/day). Neonatal rats are not an appropriate model for assessing human risk in humans because (a) rat milk has a greater fat

content than human breast milk and abamectin concentrates in fat; (b) on a weight basis, the neonatal rat consumes significantly greater quantities of milk than the newborn human and(c) the blood brain barrier in rodents is formed post-natally (as evidenced by low P-glycoprotein levels) while in humans this membrane is formed pre-natally.

Ivermectin, a close structural analogue, has been used extensively in the treatment of human onchocerciasis at an oral therapeutic dose of 0.2 mg/kg, without serious drug-related effects. Despite its wide usage in animals and humans, ivermectin does dot appear to produce birth defects.

Abamectin is non-mutagenic in the Ames test and the micronucleus test.

Dietary carcinogenicity studies in mice and rats showed negative results. In a 14-week oral study in monkeys no effects were seen at 0.2, 0.5 or 1.0 mg/kg/day; emesis was seen at 2.0 mg/kg/day; delayed pupillary obstruction at 6 and 8 mg/kg/day and mydriasis at 12 mg/kg/day

In chronic oral toxicity, abamectin produced decreased body weight gain in mice (no-observed-adverse-effect-level (NOAEL) = 1.5 mg/kg/day); tremors in rats (NOAEL = 1.5 mg/kg/day), weight loss, tremors, mydriasis, liver and gall bladder changes and death in dogs (NOAEL = 0.25 mg/kg/day); and emesis, mydriasis and sedation in monkeys (NOAL = 1 mg/kg/day).

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

EMAMECTIN BENZOATE:

• On the basis of available evidence concerning either toxicity, persistence, potential to accumulate and or observed environmental fate and behaviour, the material may present a danger, immediate or long-term and /or delayed, to the structure and/ or functioning of natural ecosystems.

Very toxic to aquatic organisms.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

Toxic to bees.

For avermectin:

log Kow 4 (abamectin)

Environmental fate:

Avermectin undergoes rapid photolysis, is readily degraded by soil microorganisms and, due to its binding properties and low water solubility, is expected to exhibit little or no potential for leaching. Both aquatic and terrestrial studies confirm the rapid degradation of abamectin (a mixture of avermectins) in the environment and its lack of accumulation and persistence. Abamectin is not degraded by sewage treatment organisms nor does it affect them.

Abamectin does not bioconcentrate in fish and is not taken up from soil into plants. Bioaccumulation does not occur

Avermeetin is stable to hydrolysis at ph 5, 7, and 9 and thus is not expected to hydrolyse in the environment. It photodegrades rapidly in water and soil with half-lives of less than 12 hours and 1 day respectively.

Abamectin hydrolyses rapidly in water when exposed to strong light and is metabolised in the soil (half-life 20-47 days)

Soil metabolism studies conducted in darkness indicate degradation of avermectin does occur with a half-life of 2 weeks to 2 months under aerobic conditions. Anaerobic degradation is slower. It is not expected to accumulate in fish. Avermectin's solubility in water is determined to be 7.8 ppb. The field dissipation study indicates that avermectin, when applied in the bait formulation directly to the soil, dissipates with a half-life of about a week but may persist longer if the bait is shaded. Due to its binding properties and low water solubility, avermectin is expected to exhibit little or no potential for leaching. However avermectin has shown conflicting results in soil thin- layer chromatographic (TLC) (immobile) and soil column studies. Abamectin binds tightly to soil (Koc >4000)

Polar degradates of avermectins are largely unidentified, but are thought to be non-toxic

Ecotoxicity:

Bird Acute oral LD50: bobwhite quail >2000 mg/kg; LC50 3102 ppm

Bird Dietary LC50: mallard duck 383 ppm

Fish LC50: bluegill 9.6 ppb; rainbow trout 3.2 ppb; fathead minnow 15 ppb Daphnia LC50 0.22 ppb

Mysid shrimp LC50: 0.02 ppb

Avermectin is extremely toxic to mammals and aquatic invertebrates and highly toxic to fish and bees. Avermectin is relatively non-toxic to birds. Based upon terrestrial residue analysis, aquatic runoff modeling and cluster analysis it appears that certain endangered species may be impacted by the use of avermectin on cotton.

For abamectin (mixture of avermectins)

Bird Acute oral LD50: 84.6 mg/kg; bobwhite quail >2000 mg/kg

Bird Dietary LC50 (8 days): bobwhite quail 3.1 mg/kg

Fish LC50 (96 h): for rainbow trout 3.2 ug/l; bluegill sunfish 9.6 ug/l; channel catfish 24 ug/l; carp 42 ug/l Daphnia EC50 (48 h) 0.34 ppb

Other aquatic spp:LC50 (96 h) for pink shrimp 1.6 ppb; mysid shrimp 0.022 ppb; blue crab 153 ppb.

- DO NOT discharge into sewer or waterways.
- The material is classified as an ecotoxin* because the Daphnia EC50 (48 hours) is less than or equal to 0.1 mg/l
 * Classification of Substances as Ecotoxic (Dangerous to the Environment)
- Appendix 8, Table 1 Compiler's Guide for the Preparation of International Chemical Safety Cards: 1993 Commission of the European Communities. Fish LC50 (96 h): rainbow trout (Onchorhyncus mykiss) 0.17 mg/l; bluegill sunfish 0.18 mg/l

Daphnia EC50 (48 h): 0.001 mg/l

Animals: Emamectin benzoate is partially metabolised but rapidly cleared (DT 50 following oral dosing 34-51 h), indicating that it has no potential for bioaccumulation.

Plants Metabolism has been investigated in lettuce, cabbage and sweet corn. It is non-systemic, and rapidly degrades in sunlight to various complex residues in which undegraded parent is the only significant residue. The residues were very low. Soil/Environment Rapidly degraded

Stable in sterile water, in the dark at pH 5 and 7, but degrades slowly at pH 9 (t1/2=4-5 months). In water at pH 7 degrades more rapidly in the light (t1/2-1-2 months) than in the dark. In laboratory soil, under aerobic conditions, degrades more rapidly in the light (t1/2=5 d) than in the dark (t1/2~50 d). Degrades more rapidly under aerobic conditions than under anaerobic conditions (t1/2=6 months).

Immobile in various solid (Koc=>25,000)

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible. Special hazard may exist specialist advicemay be required.
- Consult manufacturer for recycling options. •
- · Consult Waste Management Authority for disposal.
- · Bury or incinerate residue at an approved site.
- Decontaminate empty containers. Observe all label safeguards untilcontainers are cleaned and destroyed.
- Puncture containers to prevent re-use and bury at an authorized landfill.

Section 14 - TRANSPORTATION INFORMATION

DOT.			
Symbols:	G	Hazard class or Division:	6.1
Identification Numbers:	UN3462	PG:	I
Label Codes:	6.1	Special provisions:	141, IB7, IP1, T6, TP33
Packaging: Exceptions:	None	Packaging: Non-bulk:	211
Packaging: Exceptions:	None	Quantity limitations: Passenger aircraft/rail:	5 kg
Quantity Limitations: Cargo aircraft only:	50 kg	Vessel stowage: Location:	В
Vessel stowage: Other:	None		
Hazardous materials descriptions and proper shipping names: Toxins, extracted from living sources, solid, n.o.s. Air Transport IATA:			
ICAO/IATA Class:	6.1	ICAO/IATA Subrisk:	None
UN/ID Number:	3462	Packing Group:	I
Special provisions:	A3		

Shipping Name: TOXINS, EXTRACTED FROM LIVING SOURCES, SOLID, N.O.S. *(CONTAINS EMAMECTIN BENZOATE) Maritime Transport IMDG:

IMDG Class:	6.1	IMDG Subrisk:	None
UN Number:	3462	Packing Group:	I
EMS Number:	F-A,S-A	Special provisions:	210 274

Limited Quantities: None

Shipping Name: TOXINS EXTRACTED FROM LIVING SOURCES, SOLID, N.O.S. (contains emamectin benzoate)

Section 15 - REGULATORY INFORMATION

No data for emamectin benzoate (CAS: , 155569-91-8, 137512-74-4)

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Skin contact may produce serious health damage*.
- Inhalation may produce severe health damage*.
- Cumulative effects may result following exposure*.
 * (limited evidence).

Ingredients with multiple CAS Nos

Ingredient Name emamectin benzoate CAS 155569-91-8, 137512-74-4

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

 Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Jan-15-2009 Print Date:Apr-21-2010