Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Ethynyl Estradiol

STATEMENT OF HAZARDOUS NATURE

NFPA

SUPPLIER
Company: Santa Cruz Biotechnology, Inc.
Address: 2145 Delaware Ave
Santa Cruz, CA 95060
Telephone: 800.457.3801 or 831.457.3800
Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305
Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE
A synthetic steroidal oestrogen used therapeutically for menopausal symptoms and disorders of menstruation. Therapeutic doses 0.01 to 0.05 mg daily. Antineoplastic

SYNONYMS

Section 2 - HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW
RISK
Harmful if swallowed.
May cause CANCER.
May impair fertility.
May cause harm to breastfed babies.
Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

POTENTIAL HEALTH EFFECTS
ACUTE HEALTH EFFECTS

SWALLOWED
- Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.
- The estrogens may produce dose-related nausea and vomiting, undesirable uterine growth, proliferation and withdrawal bleeding or loss of periods. It causes enlargement of the breasts in males. Other side effects include weight gain, swelling,
breast tenderness, liver dysfunction, jaundice, depression, headache, and dizziness. Growth may be stunted due to premature closing of the growth plates. Skin reactions can include excess pigmentation of the face, rashes, and hives. Redness, itching and blistering has also been reported.

EYE
- Although the material is not thought to be an irritant, direct contact with the eye may cause transient discomfort characterized by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals.

SKIN
- The material is not thought to be a skin irritant (as classified using animal models). Abrasive damage however, may result from prolonged exposures. Good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.
- Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED
- The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified using animal models). Nevertheless, adverse effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS
- There is ample evidence that this material can be regarded as being able to cause cancer in humans based on experiments and other information.
- Ample evidence exists from experimentation that reduced human fertility is directly caused by exposure to the material. When administered orally to female mice, oestradiol induced increased adenocarcinomas of the mammary gland, cervix and uterus, and osteosarcomas of the cranium and adenoacanthomas of the uterus. Subcutaneous or intramuscular injection induced increased incidences of lymphosarcomas in mice of both sexes. Subcutaneous implants induced mammary tumours, including adenocarcinomas, papillary carcinomas and anaplastic carcinomas in adult and newborn male and female mice and female rats; pluriatary chromeubro adenomas in male rats, fibromyomas of the uterus, mesentry and abdomen in female guinea pigs; and malignant tumours in hamsters of both sexes.
- Long term administration of estrogens can greatly increase the risk of endometrial cancer, especially after menopause. Males exposed can develop enlarged breasts and other feminizing effects, nipple pigmentation, withering of testicles, sterility, infirmity and altered distribution of hair. Females exposed can develop breast enlargement and menstrual disorders and other effects on the reproductive system. Children born to exposed mothers can show breast enlargement in boys and early puberty in girls. Children who are themselves exposed may develop increased rate of bone maturation (leading to reduced final stature), strong pigmentation of the sexual organs and feminizing syndrome. Exposure before birth may be associated with limb defects and congenital heart deformities. Repeated swallowing can cause nausea, vomiting, abdominal cramps, loss of appetite, bowel inflammation, headache, dizziness, irritability, depression, general unwellness, involuntary jerky movements and convulsions. Swelling, weight change, increased blood pressure and risk of clotting, liver abnormalities, uremia have all been reported. Long-term users may also show an increased risk of developing gallstones, increased blood fats, acute pancreas inflammation and aggravation of porphyria. The eye may develop damage, increased corneal curvature with contact lens intolerance. Skin effects include itching, hives, inflammation, increased pigmentation, sensitivity to light, loss of scalp hair and hairlessness. Allergic reactions include a red rash and jaundice. Susceptibility to Candida infections and changes to sex drive may occur. Application of estrogen-containing cream had produced breast enlargement.
- Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray. When administered in the diet ethinyl oestradiol increased the incidence of pituitary tumours and malignant tumours in mice of both sexes; malignant tumours of the uterus and cervix in female mice; and benign gonadal tumours in male mice. Oral administration to rats increased the incidence of liver neoplastic nodules and pluriatary chromeubro adenomas in both sexes, and other tumours in males, and malignant liver tumours in females, when implanted as a pellet, ethinyl oestradiol induced mammary adenocarcinomas in 90% of rats; concomitant exposure to X-rays synergistically increased the number of tumours per rat and shortened the latency period of the tumours. In other studies, combination with certain progestins induced increased incidences of malignant tumours of the uterus, hepatomas in female mice and benign and/or malignant tumours in male mice. Subcutaneous injection induced mammary fibroadenomas in female mice. The use of oral contraceptives in combination with progestins is associated with benign liver adenomas and a decreased risk of clotting, liver abnormalities, uremia have all been reported. Long-term users may also show an increased risk of developing gallstones, increased blood fats, acute pancreas inflammation and aggravation of porphyria. The eye may develop damage, increased corneal curvature with contact lens intolerance. Skin effects include itching, hives, inflammation, increased pigmentation, sensitivity to light, loss of scalp hair and hairlessness. Allergic reactions include a red rash and jaundice. Susceptibility to Candida infections and changes to sex drive may occur. Application of estrogen-containing cream had produced breast enlargement.
- Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray. When administered in the diet ethinyl oestradiol increased the incidence of pituitary tumours and malignant tumours in mice of both sexes; malignant tumours of the uterus and cervix in female mice; and benign gonadal tumours in male mice. Oral administration to rats increased the incidence of liver neoplastic nodules and pluriatary chromeubro adenomas in both sexes, and other tumours in males, and malignant liver tumours in females, when implanted as a pellet, ethinyl oestradiol induced mammary adenocarcinomas in 90% of rats; concomitant exposure to X-rays synergistically increased the number of tumours per rat and shortened the latency period of the tumours. In other studies, combination with certain progestins induced increased incidences of malignant tumours of the uterus, hepatomas in female mice and benign and/or malignant tumours in male mice. Subcutaneous injection induced mammary fibroadenomas in female mice. The use of oral contraceptives in combination with progestins is associated with benign liver adenomas and a decreased incidence of benign breast disease, endometrial cancer and ovarian cancer.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability:</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Toxicity:</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Body Contact:</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Reactivity:</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chronic:</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

NAME

<table>
<thead>
<tr>
<th>ethinyl oestradiol</th>
<th>CAS RN</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>57-63-6</td>
<td>>98</td>
<td></td>
</tr>
</tbody>
</table>

Section 4 - FIRST AID MEASURES

SWALLOWED

- **IF SWALLOWED**, REFER FOR MEDICAL ATTENTION. WHERE POSSIBLE, WITHOUT DELAY.
- Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:
 - For advice, contact a Poisons Information Center or a doctor.
 - Urgent hospital treatment is likely to be needed.
 - If conscious, give water to drink.
INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

NOTE: Wear a protective glove when inducing vomiting by mechanical means.

- In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.
- If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist.
- If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS.

EYE

- If this product comes in contact with the eyes:
 - Wash out immediately with fresh running water.
 - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
 - If pain persists or recurs seek medical attention.

SKIN

- If skin contact occurs:
 - Immediately remove all contaminated clothing, including footwear.
 - Flush skin and hair with running water (and soap if available).
 - Seek medical attention in event of irritation.

INHALED

- If dust is inhaled, remove from contaminated area.
- Encourage patient to blow nose to ensure clear passage of breathing.
- If irritation or discomfort persists seek medical attention.

NOTES TO PHYSICIAN

- for poisons (where specific treatment regime is absent):

 BASIC TREATMENT

 - Establish a patent airway with suction where necessary.
 - Watch for signs of respiratory insufficiency and assist ventilation as necessary.
 - Administer oxygen by non-rebreather mask at 10 to 15 l/min.
 - Monitor and treat, where necessary, for pulmonary edema.
 - Monitor and treat, where necessary, for shock.
 - Anticipate seizures.
 - DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.

 ADVANCED TREATMENT

 - Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
 - Positive-pressure ventilation using a bag-valve mask might be of use.
 - Monitor and treat, where necessary, for arrhythmias.
 - Start an IV D5W TKO. If signs of hypovolemia are present use lactated Ringers solution. Fluid overload might create complications.
 - Drug therapy should be considered for pulmonary edema.
 - Hypotension with signs of hypovolemia requires the cautious administration of fluids. Fluid overload might create complications.
 - Treat seizures with diazepam.
 - Proparacaine hydrochloride should be used to assist eye irrigation.

BRONSTEIN, A.C. and CURRANCE, P.L.

EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994.

Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES

<table>
<thead>
<tr>
<th>Vapour Pressure (mmHG):</th>
<th>Negligible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Explosive Limit (%):</td>
<td>Not Available</td>
</tr>
<tr>
<td>Specific Gravity (water=1):</td>
<td>Not available.</td>
</tr>
<tr>
<td>Lower Explosive Limit (%):</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

EXTINGUISHING MEDIA

- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog - Large fires only.

FIRE FIGHTING

- Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Combustible solid which burns but propagates flame with difficulty.
• Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
• Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
• Build-up of electrostatic charge may be prevented by bonding and grounding.
• Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.
Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), other pyrolysis products typical of burning organic material.

FIRE INCOMPATIBILITY
■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION
Glasses:
Chemical goggles.

Gloves:

Respirator:
Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS
■ Clean up waste regularly and abnormal spills immediately.
■ Avoid breathing dust and contact with skin and eyes.
■ Wear protective clothing, gloves, safety glasses and dust respirator.
■ Use dry clean up procedures and avoid generating dust.
■ Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
■ Dampen with water to prevent dusting before sweeping.
■ Place in suitable containers for disposal.
Environmental hazard - contain spillage.

MAJOR SPILLS
■ Clear area of personnel and move upwind.
■ Alert Emergency Responders and tell them location and nature of hazard.
■ Wear full body protective clothing with breathing apparatus.
■ Prevent, by all means available, spillage from entering drains or water courses.
■ Consider evacuation (or protect in place).
■ No smoking, naked lights or ignition sources.
■ Increase ventilation.
■ Stop leak if safe to do so.
■ Water spray or fog may be used to disperse / absorb vapour.
■ Contain or absorb spill with sand, earth or vermiculite.
■ Collect recoverable product into labelled containers for recycling.
■ Collect solid residues and seal in labelled drums for disposal.
■ Wash area and prevent runoff into drains.
■ After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
■ If contamination of drains or waterways occurs, advise emergency services.
Environmental hazard - contain spillage.

PROTECTIVE ACTIONS FOR SPILL

FOOTNOTES
1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.
2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.
3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.
4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). LARGER SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder.
6 IERG information is derived from CANUTEC - Transport Canada.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)
AEGL 1: The airborne concentration of a substance above which it is predicted
that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer’s storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.
- DO NOT cut, drill, grind or weld such containers

In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS
- Glass container.
- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS
- Observe manufacturer’s storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>+</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

X: Must not be stored together
O: May be stored together with specific preventions
+: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

The following materials had no OELs on our records
- ethinyl oestradiol: CAS:57-63-6

MATERIAL DATA

ETHINYL OESTRADIOL:
- It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.
- At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply. Airborne particulate or vapor must be kept to levels as low as is practicably achievable given access to modern engineering controls and monitoring hardware. Biologically active compounds may produce idiosyncratic effects which are entirely unpredictable on the basis of literature searches and prior clinical experience (both recent and past).

PERSONAL PROTECTION
Consult your EHS staff for recommendations

EYE
- When handling very small quantities of the material eye protection may not be required.
- For laboratory, larger scale or bulk handling or where regular exposure in an occupational setting occurs:
 - Chemical goggles
 - Face shield. Full face shield may be required for supplementary but never for primary protection of eyes
 - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience.
 - Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]

HANDS/FEET
- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
 - frequency and duration of contact,
 - chemical resistance of glove material,
 - glove thickness and
 - dexterity
- Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.
- Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
- Rubber gloves (nitrile or low-protein, powder-free latex). Employees allergic to latex gloves should use nitrile gloves in preference.
- Double gloving should be considered.
- PVC gloves.
- Protective shoe covers.
- Head covering.

OTHER
- Employees working with confirmed human carcinogens should be provided with, and be required to wear, clean, full body protective clothing (smocks, coveralls, or long-sleeved shirt and pants), shoe covers and gloves prior to entering the regulated area.
- Employees engaged in handling operations involving carcinogens should be provided with, and required to wear and use half-face filter-type respirators with filters for dusts, mists and fumes, or air purifying canisters or cartridges. A respirator affording higher levels of protection may be substituted.
- Emergency deluge showers and eyewash fountains, supplied with potable water, should be located near, within sight of, and on the same level with locations where direct exposure is likely.
- Prior to each exit from an area containing confirmed human carcinogens, employees should be required to remove and leave protective clothing and equipment at the point of exit and at the last exit of the day, to place used clothing and equipment in impervious containers at the point of exit for purposes of decontamination or disposal. The contents of such impervious containers must be identified with suitable labels. For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood.
- Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood.
- For quantities up to 500 grams a laboratory coat may be suitable.
- For quantities up to 1 kilogram a disposable laboratory coat or coverall of low permeability is recommended. Coveralls should be buttoned at collar and cuffs.
- For quantities over 1 kilogram and manufacturing operations, wear disposable coverall of low permeability and disposable shoe covers.
- For manufacturing operations, air-supplied full body suits may be required for the provision of advanced respiratory protection.
- Eye wash unit.
- Ensure there is ready access to an emergency shower.
- For Emergencies: Vinyl suit
- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

Respirator

<table>
<thead>
<tr>
<th>Protection Factor</th>
<th>Half-Face Respirator</th>
<th>Full-Face Respirator</th>
<th>Powered Air Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 x PEL</td>
<td>P1</td>
<td>-</td>
<td>PAPR-P1</td>
</tr>
<tr>
<td></td>
<td>Air-line*</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>50 x PEL</td>
<td>Air-line**</td>
<td>P2</td>
<td>PAPR-P2</td>
</tr>
</tbody>
</table>

Air-line and **Air-line** specifications are subject to change based on the specific application and environmental conditions.
100 x PEL - P3 -
100+ x PEL - Air-line* -
* - Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:
Class 1 low to medium absorption capacity filters.
Class 2 medium absorption capacity filters.
Class 3 high absorption capacity filters.
PAPR Powered Air Purifying Respirator (positive pressure) cartridge.
Type A for use against certain organic gases and vapors.
Type AX for use against low boiling point organic compounds (less than 65ºC).
Type B for use against certain inorganic gases and other acid gases and vapors.
Type E for use against sulfur dioxide and other acid gases and vapors.
Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.
Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.
Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

- Employees exposed to confirmed human carcinogens should be authorized to do so by the employer, and work in a regulated area.
- Work should be undertaken in an isolated system such as a "glove-box". Employees should wash their hands and arms upon completion of the assigned task and before engaging in other activities not associated with the isolated system.
- Within regulated areas, the carcinogen should be stored in sealed containers, or enclosed in a closed system, including piping systems, with any sample ports or openings closed while the carcinogens are contained within.
- Open-vessel systems are prohibited.
- Each operation should be provided with continuous local exhaust ventilation so that air movement is always from ordinary work areas to the operation.
- Exhaust air should not be discharged to regulated areas, non-regulated areas or the external environment unless decontaminated. Clean make-up air should be introduced in sufficient volume to maintain correct operation of the local exhaust system.
- For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood.
- Except for outdoor systems, regulated areas should be maintained under negative pressure (with respect to non-regulated areas). Local exhaust ventilation requires make-up air be supplied in equal volumes to replaced air.
- Laboratory hoods must be designed and maintained so as to draw air inward at an average linear face velocity of 150 feet/ min. with a minimum of 125 feet/ min. Design and construction of the fume hood requires that insertion of any portion of the employees body, other than hands and arms, be disallowed.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid. Does not mix with water.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>State</td>
<td>Divided solid</td>
</tr>
<tr>
<td>Melting Range (°F)</td>
<td>359.6- 363.2</td>
</tr>
<tr>
<td>Boiling Range (°F)</td>
<td>Not available.</td>
</tr>
<tr>
<td>Flash Point (°F)</td>
<td>Not Available.</td>
</tr>
<tr>
<td>Decomposition Temp (°F)</td>
<td>Not available.</td>
</tr>
<tr>
<td>Autoignition Temp (°F)</td>
<td>Not available.</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not Available.</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not Available.</td>
</tr>
<tr>
<td>Volatile Component (%vol)</td>
<td>Negligible</td>
</tr>
<tr>
<td>Molecular Weight</td>
<td>296.39</td>
</tr>
<tr>
<td>Viscosity</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Solubility in water (g/L)</td>
<td>Immiscible</td>
</tr>
<tr>
<td>pH (1% solution)</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>pH (as supplied)</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Vapour Pressure (mmHG)</td>
<td>Negligible</td>
</tr>
<tr>
<td>Specific Gravity (water=1)</td>
<td>Not available.</td>
</tr>
<tr>
<td>Relative Vapor Density (air=1)</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Evaporation Rate</td>
<td>Not applicable.</td>
</tr>
</tbody>
</table>

APPEARANCE

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

- Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.
Section 11 - TOXICOLOGICAL INFORMATION

ethinyl oestradiol

TOXICITY AND IRRITATION

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY

IRRITATION

Oral (rat) LD50: 2952 mg/kg

■ Exposure to the material for prolonged periods may cause physical defects in the developing embryo (teratogenesis).

Tenth Annual Report on Carcinogens: Substance anticipated to be Carcinogen

[National Toxicology Program: U.S. Dep. of Health & Human Services 2002].

Oral (human) TDLO: 21 mg/kg/21d - I Nil reported

Somnolence, convulsions, ataxia, dyspnea, nausea/ vomiting, liver tumours, angiosarcoma, bladder tumours, kidney tumours, endocrine tumours, skin tumours, paternal effects, maternal effects, effects on fertility, specific developmental abnormalities (skin, musculoskeletal system, urogenital system), testicular tumours, ovarian tumours, uterine tumours, effects on newborn recorded.

Carcinogenic by RTECS criteria

CARCINOGEN

Estrogens, steroidal (NB: This evaluation applies to the group of compounds as a whole and not necessarily to all individual compounds within the group).

International Agency for Research on Cancer (IARC) - Agents Reviewed by the IARC Monographs

Group 1

ETHINYLESTRA DIOL

US Environmental Defense Scorecard

Recognized Carcinogens

Reference(s) P65

ETHINYLESTRA DIOL

US Environmental Defense Scorecard

Suspected Carcinogens

Reference(s) P65

ESTROGENS, STEROIDAL

US Environmental Defense Scorecard

Suspected Carcinogens

Reference(s) IARC, NTP-C

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

ETHINYL OESTRADIOL:

■ Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

■ Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

■ Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

■ The presence of residual pharmaceuticals and environmental endocrine disrupters (EEDs) is increasingly significant due to their impact on human health and wildlife. Of the compounds implicated as EEDs, the most potent in their oestrogenic effect are the natural and synthetic estrogens. The occurrence of estrogenic compounds in the aquatic environment in particular is of interest. Steroid estrogens at sub-micrograms per liter levels are frequently detected in surface water. When at sub-micrograms per liter levels, these estrogenic chemicals show greater capacities of sorption by soils and sediments. Among these estrogenic chemicals, a group of synthetic steroids, such as 17α-ethinylestradiol, is of particular concern. This concern arises in part from the increasing use of birth-control pills, formulated with exogeneous estrogenic and progestational chemicals that show high physiological activity at very low concentrations and have been associated to certain alarming effects on reproduction and developmental processes such as feminisation, decreased fertility or hermaphroditism.

Steroidal estrogen hormones such as estradiol, estrone, and estriol are also of concern because there is evidence that low nanogram per liter concentrations of estrogens in water can adversely affect the reproductive biology of fish and other aquatic vertebrate species.

The environmental fate of estrogens is not clearly known. Laboratory-based studies have found that the biological activity of these compounds is greatly reduced or eliminated within several hours to days due to degradation and sorption. On the other hand, field studies have demonstrated that estrogens are sufficiently mobile and persistent to impact surface and groundwater quality. Unconjugated steroidal estrogens have low solubility in water (0.8-13.3 mg L-1) and are moderately hydrophobic (log Kow 2.6-4.0). Therefore is the potential for bioaccumulation exists. Estrogenic compounds are generally bioaccumulative and may biomagnify through the food chain resulting in adverse physiological effects. Accumulation into milk may be particularly worrying as it is fed to infants and children and their immune systems are not fully developed, therefore the physiological effects may be more serious.

■ DO NOT discharge into sewer or waterways.

Fish LD50 (24 h): 190->5000 mg/L

Toxicity invertebrate: cell mult. inhib. 300-6300mg/L

Effects on algae and plankton: cell mult. inhib. algae 0.75-1.6mg/L

Degradation Biological: significant processes Abiotic: Ron Qt C

Ecotoxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
<th>Bioaccumulation</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethinyl oestradiol</td>
<td>HIGH</td>
<td>LOW</td>
<td>LOW</td>
<td>LOW</td>
</tr>
</tbody>
</table>

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

■ Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

■ A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change

Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use.
in use, and recycling or reuse may not always be appropriate. DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

<table>
<thead>
<tr>
<th>Symbols</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazard class or Division</td>
<td>9</td>
</tr>
<tr>
<td>Identification Numbers</td>
<td>UN3077</td>
</tr>
<tr>
<td>PG</td>
<td>III</td>
</tr>
<tr>
<td>Special provisions</td>
<td>8, 146, 335, B54, IB8, IP3, N20, T1, TP33</td>
</tr>
<tr>
<td>Packaging: Non-bulk</td>
<td>213</td>
</tr>
<tr>
<td>Quantity limitations: Cargo aircraft only</td>
<td>No limit</td>
</tr>
<tr>
<td>Vessel stowage: Location</td>
<td>A</td>
</tr>
</tbody>
</table>

Hazardous materials descriptions and proper shipping names:

Air Transport IATA:

- **ICAO/IATA Class:** 9
- **UN/ID Number:** 3077
- **Packing Group:** III
- **Special provisions:** A97

Maritime Transport IMDG:

- **IMDG Class:** 9
- **UN Number:** 3077
- **Packaging Group:** III
- **EMS Number:** F-A,S-F
- **Limited Quantities:** 5 kg

Shipping Name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. *(CONTAINS ETHINYL OESTRADIOL)*

ETHINYL OESTRADIOL (CAS: 57-63-6) is found on the following regulatory lists:

- Canada Non-Domestic Substances List (NDSL)
- OSPAR List of Substances of Possible Concern
- US - California Air Toxics "Hot Spots" List (Assembly Bill 2588) Substances which need not be reported unless manufactured by the facility
- US - California Occupational Safety and Health Regulations (CAL/OSHA) - Hazardous Substances List
- US - California Proposition 65 - Carcinogens
- US - California Proposition 65 - Priority List for the Development of MADLs for Chemicals Causing Reproductive Toxicity
- US - California Proposition 65 - Priority List for the Development of NSRLs for Carcinogens
- US - California Proposition 65 - Reproductive Toxicity
- US - Connecticut Hazardous Air Pollutants
- US - Maine Chemicals of High Concern List
- US - Minnesota Hazardous Substance List
- US - Pennsylvania - Hazardous Substance List
- US Toxic Substances Control Act (TSCA) - Inventory

Section 15 - REGULATORY INFORMATION

LIMITED EVIDENCE

- Skin contact may produce health damage*.
- May be harmful to the fetus/embryo*.
- * (limited evidence).

Germany Hazard classification and labelling of medicines with antineoplastic effects (ATC Code L01 and L02)

<table>
<thead>
<tr>
<th>INN</th>
<th>CAS</th>
<th>Danger</th>
<th>CMR effects</th>
<th>CMR effects</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethinylestradiol</td>
<td>57-63-6</td>
<td>T4</td>
<td>R 60 4</td>
<td>Cat 1&2</td>
<td>Cat 3</td>
</tr>
</tbody>
</table>

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.
Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Nov-29-2008
Print Date: Apr-21-2010