Lycopene

sc-205738

Material Safety Data Sheet

The Power to Question

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Lycopene

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFΡΔ

SUPPLIER

Company: Santa Cruz Biotechnology, Inc.

Address:

2145 Delaware Ave Santa Cruz, CA 95060

Telephone: 800.457.3801 or 831.457.3800

Emergency Tel: CHEMWATCH: From within the US and

Canada: 877-715-9305

Emergency Tel: From outside the US and Canada: +800 2436

2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

Due to its strong color and non-toxicity, lycopene is a useful food coloring. Lycopene is a bright red carotene and carotenoid pigment and phytochemical found in tomatoes and other red fruits & vegetables, such as red carrots, watermelons and papayas (but not strawberries or cherries). Although lycopene is chemically a carotene, it has no vitamin A activity. In plants, algae, and other photosynthetic organisms, lycopene is an important intermediate in the biosynthesis of many carotenoids, including beta carotene, responsible for yellow, orange or red pigmentation, photosynthesis, and photo-protection. Lycopene is not an essential nutrient for humans, but is commonly found in the diet, mainly from dishes prepared with tomato sauce. When absorbed from the stomach, lycopene is transported in the blood by various lipoproteins and accumulates in the liver, adrenal glands, and testes. Because preliminary research has shown an inverse correlation between consumption of tomatoes and cancer risk, lycopene has been considered a potential agent for prevention of some types of cancers, particularly prostate cancer. However, this area of research and the relationship with prostate cancer have been deemed insufficient of evidence for health claim approval by the US Food and Drug Administration. Lycopene may be the most powerful carotenoid quencher of singlet oxygen[17], being 100 times more efficient in test tube studies of singlet-oxygen quenching action than vitamin E, which in turn has 125 times the quenching action of glutathione (water soluble)[citation needed]. Singlet oxygen produced during exposure to ultraviolet light is a primary cause of skin aging. Given its antioxidant properties, substantial scientific and clinical research has been devoted to a possible correlation between lycopene consumption and general health. Early research suggested some amelioration of cardiovascular disease, cancer, diabetes, osteoporosis, and even male infertility. There have been several studies produced that analyze the anti-cancer properties of lycopene, although research has been primary inconclusive. Evidence for lycopene?s benefit was strongest for cancers of the lung, stomach, and prostrate gland. Lycopene is not modified to vitamin A in the body so can be accessible for other benefits such as antioxidation. The absence of the betaionone ring structure for lycopene increases its antioxidant action. Lycopene is also the most efficient oxygen and free radicals quencher and is the prime carotenoid in plasma and other tissues. Lycopene is also found in lung tissue and is valuable in protecting lymphocytes from NO2 damage found in lung cancer. Lycopene also may help decrease the impact of oxidative load from pylori infections in the stomach. The tomato-derived carotenoid lycopene may reduce risk of cancer by activating special cancer preventive enzymes such as phase II detoxification enzymes, which remove harmful carcinogens from cells and the body. In one study of lycopene as a inhibitor of human cancer cell proliferation, it was found that unlike cancer cells, human fibroblasts were less sensitive to lycopene, and the cells gradually escaped growth inhibition over time. In addition to its inhibitory effect on basal endometrial cancer cell proliferation, lycopene also was found to suppress insulin-like growth factor-l-stimulated growth. Insulin-like growth factors are major autocrine/paracrine regulators of mammary and endometrial cancer cell growth. Therefore, lycopene interference in this major autocrine/paracrine system may open new avenues for research on the role of lycopene in the regulation of endometrial cancer and other tumors. In different studies however, lycopene was even found to have an inhibitory effect on cataract development and several different kinds of cancer cells including breast and endometrial cancer cells, prostrate carcinoma cells, and colon cancer cells[

SYNONYMS

C40-H56, "6E, 8E, 10Z, 12Z, 14E, 16E, 18E, 20Z, 22Z, 24E, 26E)-2, 6, 10, ", "14, 19, 23, 27, 31-octamethyldotriaconta-2, 6, 8, 10, 12, 1", "4, 16, 18, 20, 22, 24, 26, 30-tridecaene", tetraterpene, "(all trans-lycopene)", "15, 15' -cis-form [CAS RN: 59092-07-8]", carotenoid

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

Possible risk of harm to the unborn child. Toxic to aquatic organisms.

POTENTIAL HEALTH EFFECTS ACUTE HEALTH EFFECTS

SWALLOWED

■ The material has NOT been classified as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality (death) rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, unintentional ingestion is not thought to be cause for concern.

EYE

■ Although the material is not thought to be an irritant, direct contact with the eye may cause transient discomfort characterized by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals.

SKIN

- The material is not thought to produce adverse health effects or skin irritation following contact (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

- The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS

■ Results in experiments suggest that this material may cause disorders in the development of the embryo or fetus, even when no signs of poisoning show in the mother.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray. Prolonged overdose of Vitamin A is associated with fatigue, irritability, loss of weight and appetite, mild fever, increased amounts of urine, enlarged liver and spleen, hair loss, bleeding lips, thickening of skin and yellow pigmentation. Bone and joint pain may occur, and growth may be permanently arrested in children. There may be birth defects and loss of bone mineral associated with carotenoids.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

		Min	Max	
Flammability:	1			
Toxicity:	0			
Body Contact:	0		Min/Nil=0 Low=1 Moderate=2 High=3 Extreme=4	
Reactivity:	1			
Chronic:	2			
NIANAT				OAO DNI

NAME CAS RN %
lycopene 502-65-8 >98

Section 4 - FIRST AID MEASURES

SWALLOWED

.

- · Immediately give a glass of water.
- First aid is not generally required. If in doubt, contact a Poisons Information Center or a doctor.

EYE

- If this product comes in contact with eyes:
- Wash out immediately with water.
- If irritation continues, seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin or hair contact occurs:
- · Flush skin and hair with running water (and soap if available).
- · Seek medical attention in event of irritation.

INHALED

.

- If fumes or combustion products are inhaled remove from contaminated area.
- · Other measures are usually unnecessary.

NOTES TO PHYSICIAN

■ Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES

Vapour Pressure (mmHG):	Negligible	
Upper Explosive Limit (%):	Not Available	
Specific Gravity (water=1):	Not Available	
Lower Explosive Limit (%):	Not Available	

EXTINGUISHING MEDIA

- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

FIRE FIGHTING

.

- Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
 Cool fire expressed containers with water approximately from
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

.

- Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive
 mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the
 fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

Chemical goggles.

Gloves:

Respirator:

Particulate

MINOR SPILLS

- _
- Clean up all spills immediately.
- Avoid breathing dust and contact with skin and eyes.
- Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust.
- Sweep up, shovel up or vacuum up (consider explosion-proof machines designed to be grounded during storage and use).
- Place spilled material in clean, dry, sealable, labeled container.

MAJOR SPILLS

- Moderate hazard.
- · CAUTION: Advise personnel in area.
- Alert Emergency Responders and tell them location and nature of hazard.
- · Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- · Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- · If contamination of drains or waterways occurs, advise emergency services.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

.

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- · Avoid contact with incompatible materials.
- · When handling, DO NOT eat, drink or smoke.
- · Keep containers securely sealed when not in use.
- · Avoid physical damage to containers.
- · Always wash hands with soap and water after handling.
- · Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- Do NOT cut, drill, grind or weld such containers
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate
 workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

- .
- · Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

- X: Must not be stored together
- O: May be stored together with specific preventions
- +: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

The following materials had no OELs on our records

• lycopene: CAS:502-65-8 CAS:5902-07-8

MATERIAL DATA

LYCOPENE:

■ It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.

At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

- · Safety glasses with side shields
- Chemical goggles.
- · Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them.

HANDS/FEET

- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- · Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- · nitrile rubber
- butyl rubber
- fluorocaoutchouc
- polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.
- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered,

positive flow, full face apparatus may be an option).

- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory . These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

RESPIRATOR

_			
Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
10 x PEL	P1	-	PAPR-P1
	Air-line*	-	-
50 x PEL	Air-line**	P2	PAPR-P2
100 x PEL	-	P3	-
		Air-line*	-
100+ x PEL	-	Air-line**	PAPR-P3

^{* -} Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g.

Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.

Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of:
- (a): particle dust respirators, if necessary, combined with an absorption cartridge;
- (b): filter respirators with absorption cartridge or canister of the right type;
- (c): fresh-air hoods or masks
- Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant.

Type of Contaminant:	Air Speed:	
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)	
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)	
Within each range the appropriate value depends on:		
Lower end of the range	Upper end of the range	
1: Room air currents minimal or favorable to capture	1: Disturbing room air currents	
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity	
3: Intermittent, low production.	3: High production, heavy use	
4: Large hood or large air mass in motion	4: Small hood-local control only	

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

PHYSICAL PROPERTIES

Does not mix with water.

State	Divided Solid	Molecular Weight	536.87
Melting Range (°F)	341.6- 343.4	Viscosity	Not Applicable
Boiling Range (°F)	Not Applicable	Solubility in water (g/L)	Immiscible
Flash Point (°F)	Not Available	pH (1% solution)	Not Applicable
Decomposition Temp (°F)	Not Available	pH (as supplied)	Not Applicable
Autoignition Temp (°F)	Not Available	Vapour Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not Available	Specific Gravity (water=1)	Not Available
Lower Explosive Limit (%)	Not Available	Relative Vapor Density (air=1)	Not Applicable
Volatile Component (%vol)	Negligible	Evaporation Rate	Not Applicable

APPEARANCE

Deep red solid; does not mix with water. One gram dissolves in 50 ml carbon disulfide, in 3 l boiling ether, in 12 l boiling petr ether, in 14 l hexane at 0 deg C. Sol in chloroform, benzene. Almost insol in methanol, ethanol, A tetraterpene assembled from eight isoprene units, composed entirely of carbon and hydrogen, and is insoluble in water. Lycopene's eleven conjugated double bonds give it its deep red color and are responsible for its antioxidant activity.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- · Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

■ The very feature which confers the important properties on carotenoids (antioxidants) also makes

them unstable. The structures break down with attack by free radicals, such as singlet molecular oxygen and other reactive species. The common degradation pathways are isomerisation, oxidation and fragmentation of the carotenoid molecules. Heat, light and acids promote isomerisation of the trans-form of carotenoids to the cis-form. Light, enzymes, pro-oxidant metals and co-oxidation with unsaturated lipids, on the other hand, induce oxidation. Pyrolysis occurs under intense heat with expulsion of low molecular weight molecules.

The fact that carotenoid pigments are made up of a system of conjugated double bonds makes them vulnerable to heat. When intense heat is applied, the tine(?) structures are cleaved and molecular reactions occur, involving the double bonds. Two types of thermal degradation products are formed: a volatile fraction of low molecular weight molecules which is vapourised, and a non-volatile fraction from the larger fragments of the carotene molecules after cleaving off the volatile fraction. the volatile fraction may include 2,6-dimethylnapthalene, toluene, m-xylene.

During carotene oxidation a catalytic agent is formed which causes accelerated deterioration. A strong smell of ionine develops upon the auto-oxidation (the end-rings of the carotene molecule split off). Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

lycopene

TOXICITY AND IRRITATION

■ No significant acute toxicological data identified in literature search.

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows: LYCOPENE:

- Toxic to aquatic organisms.
- Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

■ Substances containing unsaturated carbons are ubiquitous in indoor environments. They result from many sources (see below). Most are reactive with environmental ozone and many produce stable products which are thought to adversely affect human health. The potential for surfaces in an enclosed space to facilitate reactions should be considered.

Source of unsaturated substances	Unsaturated substances (Reactive Emissions)	Major Stable Products produced following reaction with ozone.
Occupants (exhaled breath, ski oils, personal care products)	Isoprene, nitric oxide, squalene, unsaturated sterols, oleic acid and other unsaturated fatty acids, unsaturated oxidation products	Methacrolein, methyl vinyl ketone, nitrogen dioxide, acetone, 6MHQ, geranyl acetone, 4OPA, formaldehyde, nonanol, decanal, 9-oxo-nonanoic acid, azelaic acid, nonanoic acid.
Soft woods, wood flooring, including cypress, cedar and silver fir boards, houseplants	Isoprene, limonene, alpha-pinene, other terpenes and sesquiterpenes	Formaldehyde, 4-AMC, pinoaldehyde, pinic acid, pinonic acid, formic acid, methacrolein, methyl vinyl ketone, SOAs including ultrafine particles
	4-Phenylcyclohexene, 4-	Formaldehyde, acetaldehyde,

Carpets and carpet backing	vinyicyclonexerie, styrene, z-ethylnexyi acrylate, unsaturated fatty acids and esters	benzaldehyde, hexanal, nonanal, 2-nonenal		
Linoleum and paints/polishes containing linseed oil	Linoleic acid, linolenic acid	Propanal, hexanal, nonanal, 2-heptenal, 2-nonenal, 2-decenal, 1-pentene-3-one, propionic acid, n-butyric acid		
Latex paint	Residual monomers	Formaldehyde		
Certain cleaning products, polishes, waxes, air fresheners	Limonene, alpha-pinene, terpinolene, alpha-terpineol, linalool, linalyl acetate and other terpenoids, longifolene and other sesquiterpenes	Formaldehyde, acetaldehyde, glycoaldehyde, formic acid, acetic acid, hydrogen and organic peroxides, acetone, benzaldehyde, 4-hydroxy-4-methyl-5-hexen-1-al, 5-ethenyl-dihydro-5-methyl-2(3H)-furanone, 4-AMC, SOAs including ultrafine particles		
Natural rubber adhesive	Isoprene, terpenes	Formaldehyde, methacrolein, methyl vinyl ketone		
Photocopier toner, printed paper, styrene polymers	Styrene	Formaldehyde, benzaldehyde		
Environmental tobacco smoke	Styrene, acrolein, nicotine	Formaldehyde, benzaldehyde, hexanal, glyoxal, N-methylformamide, nicotinaldehyde, cotinine		
Soiled clothing, fabrics, bedding	Squalene, unsaturated sterols, oleic acid and other saturated fatty acids	Acetone, geranyl acetone, 6MHO, 40PA, formaldehyde, nonanal, decanal, 9-oxononanoic acid, azelaic acid, nonanoic acid		
Soiled particle filters	Unsaturated fatty acids from plant waxes, leaf litter, and other vegetative debris; soot; diesel particles	Formaldehyde, nonanal, and other aldehydes; azelaic acid; nonanoic acid; 9-oxo-nonanoic acid and other oxo-acids; compounds with mixed functional groups (=O, -OH, and -COOH)		
Ventilation ducts and duct liners	Unsaturated fatty acids and esters, unsaturated oils, neoprene	C5 to C10 aldehydes		
"Urban grime"	Polycyclic aromatic hydrocarbons	Oxidized polycyclic aromatic hydrocarbons		
Perfumes, colognes, essential oils (e.g. lavender, eucalyptus, tea tree)	Limonene, alpha-pinene, linalool, linalyl acetate, terpinene-4-ol, gamma-terpinene	Formaldehyde, 4-AMC, acetone, 4-hydroxy-4-methyl-5-hexen-1-al, 5-e ethenyl-dihydro-5-methyl-2(3H) furanone, SOAs including ultrafine particles		
Overall home emissions	Limonene, alpha-pinene, styrene	Formaldehyde, 4-AMC, pinonaldehyde, acetone, pinic acid, pinonic acid, formic acid, benzaldehyde, SOAs including ultrafine particles		
Abbreviations: 4-AMC, 4-acetyl-1-methylcyclohexene: 6MHQ, 6-methyl-5-heptene-2-one, 4OPA, 4-oxopentanal, SOA				

Abbreviations: 4-AMC, 4-acetyl-1-methylcyclohexene; 6MHQ, 6-methyl-5-heptene-2-one, 4OPA, 4-oxopentanal, SOA, Secondary Organic Aerosols

Reference: Charles J Weschler; Environmental Helath Perspectives, Vol 114, October 2006.

■ Retinoids, low molecular weight lipophilic derivatives of vitamin A, can have profound effects upon the development of various embryonic systems especially amphibians in which retinoic acid receptors have been hypothesized to play a role in frog deformities.

Although naturally occurring, retinoids have been used for a number of years for a wide array of medical conditions. Although retinoids and retinoic acids would also be expected to be photolabile (and therefore not persistent), their products may also still possess receptor activity. For example, methoprene, an insecticidal synthetic retinoic acid mimic, is photolabile and yields numerous photo-products, some of which also elicit strong retinoic acid activity.

■ DO NOT discharge into sewer or waterways.

Ecotoxicity

Ingredient Persistence: Water/Soil Persistence: Air Bioaccumulation Mobility LOW LOW

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

lycopene (CAS: 502-65-8,5902-07-8) is found on the following regulatory lists;

"Canada Domestic Substances List (DSL)", "US FDA CFSAN Color Additive Status List 4"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

Cumulative effects may result following exposure*.
 * (limited evidence).

Ingredients with multiple CAS Nos

Ingredient Name lycopene

CAS

502-65-8, 5902-07-8

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at:

 www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Dec-23-2009 Print Date:Apr-21-2010