Triadimenol

sc-205871

Material Safety Data Sheet

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Triadimenol

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200

NFPA

SUPPLIER

Company: Santa Cruz Biotechnology, Inc.

Address:

2145 Delaware Ave Santa Cruz, CA 95060

Telephone: 800.457.3801 or 831.457.3800

Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305

Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

Systemic fungicide with protective, curative and eradicant action for the control of powdery of powdery mildews, rusts and Rhychosporium in cereals, and when applied as a seed treatment, control of bunt, smuts, Typhula spp., seedling blight, leaf stripe, net blotch and other cereal diseases. Inhibits ergosterol biosynthesis. Absorbed by the roots and leaves with translocation in young growing tissue. Intermediate

SYNONYMS

C14-H18-Cl-N3-O2, "ethanol, 2-(4-chlorophenoxy)-1-tert-butyl-(1H-1, 2, 4-triazole-1-yl)-", "ethanol, 2-(4-chlorophenoxy)-1-tert-butyl-(1H-1, 2, 4-triazole-1-yl)ethanol", "2-(4-chlorophenoxy)-1-tert-butyl-2-(1H-1, 2, 4-triazole-1-yl)ethanol", "beta-(chlorophenoxy)-alpha-(1, 1-dimethylethyl)-1H-1, 2, 4-triazole-1-", ethanol, "beta-(chlorophenoxy)-alpha-(1, 1-dimethylethyl)-1H-1, 2, 4-triazole-1-", ethanol, "1-(4-chlorophenoxy)-3, 3-dimethylethyl-1-(1H-1, 2, 4-triazol-1-", yl)butan-2-ol, "1-(4-chlorophenoxy)-3, 3-dimethylethyl-1-(1H-1, 2, 4-triazol-1-", yl)butan-2-ol, Bayfidan, "Bay KWG 0519", Baytan, Spinnaker, Summit, "azole/ phenoxy fungicide/ pesticide"

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW RISK

Limited evidence of a carcinogenic effect.

Harmful by inhalation, in contact with skin and if swallowed.

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

- Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.
- Aromatase inhibitors (including triazoles and azoles) produce several side effects including mood swing, depression, weight gain, hot flushes, vaginal dryness, bloating, early onset of menopause. Long-term use may result in bone weakness, increased

risk of blood clots, gastrointestinal disturbance, and sweats.

Aromatase inhibitors lower the level of oestrogen in post-menopausal women who have hormone-receptor-positive breast cancers. Prior to menopause oestrogen is mostly produced in the ovaries. Post-menopausal women produce oestrogen from another hormone, androgen. Aromatase inhibitors prevent the enzyme, aromatase from catalysing this reaction. Breast cancer cell growth in post-menopausal women is stimulated by oestrogen.

■ Chlorphenoxy compounds irritate the digestive system and cause nausea and vomiting, chest pain, and diarrhea. Taking large doses can result in mineral imbalance, temperature changes, hyperventilation, low blood pressure, dilated blood vessels, damage to the heart and liver with death of white blood cells, and convulsions. Most salts and esters of 2,4-D exhibit similar effects, although the free acid is more toxic. Massive doses can cause ventricular fibrillation followed by death. If death is delayed, there may be a sluggishness followed by spastic changes in muscles and inco-ordination. Severe cases cause apathy, weakness in the legs, regular muscle spasms and coma. Subacute poisonings cause severe nosebleeds, bleeding from the mouth and irritation of the eye and nose. Clinically, poisonings are uncommon, although muscle weakness and nervous symptoms in the extremities are sometimes reported. The substances are not metabolized and are excreted only slowly from the body, in the urine.

EYE

- There is some evidence to suggest that this material can causeeye irritation and damage in some persons.
 Corneal injury resulting from 2,4-D exposure may be slow to heal.

SKIN

- Skin contact with the material may be harmful; systemic effects may resultfollowing absorption.
 The material is not thought to be a skin irritant (as classified using animal models). Abrasive damage however, may result from prolonged exposures. Good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.
- 2,4-D and its derivatives can all be absorbed through the skin of humans. Severe peripheral neuropathy has followed causing limb paralysis and loss of sensation. Fatigue, nausea, vomiting, anorexia, diarrhea and swelling occur, followed by
- "pins and needles", pain and paralysis. Disability is long-lasting.

 Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

- Inhalation of dusts, generated by the material, during the course of normalhandling, may be harmful.
- The material is not thought to produce respiratory irritation (as classified using animal models). Nevertheless inhalation of
- dusts, or fume, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress.

 Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.
- Inhalation of chlorophenoxy dusts or mists may result in sore throat, burning sensations in the throat and chest, cough, tears, inflamed nose, dizziness and inco-ordination, as a result of absorption from the lungs.

CHRONIC HEALTH EFFECTS

■ There has been concern that this material can cause cancer or mutations, but there is not enough data to make an

Exposure to the material may cause concerns for human fertility, on the basis that similar materials provide some evidence of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects, but which are not a secondary non-specific consequence of other toxic effects.

Based on experience with animal studies, there is a possibility that exposure to the material may result in toxic effects to the development of the fetus, at levels which do not cause significant toxic effects to the mother.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray. Chlorophenoxy herbicides cause an increased risk of cancers of soft tissue, lymph and bronchi. Inflammation of skin can result from long term contact. Chronic exposure to 2,4-D can cause nausea, liver changes, skin eruptions, irritation of the airways and eyes, as well as nervous changes. People with chronic health conditions or who have endocrinological or immune disorders should not be exposed to herbicides.

Azole fungicides show a broad antifungal activity and are used either to prevent fungal infections or to cure an infection. Therefore, they are important tools in integrated agricultural production. According to their chemical structure, azole compounds are classified into triazoles and imidazoles; however, their antifungal activity is due to the same molecular mechanism. The cell membrane assembly of fungi and yeast is disturbed by blocking the synthesis of the essential membrane component ergosterol. This fundamental biochemical mechanism is the basis for the use of azole fungicides in agriculture and in human and veterinary antimycotic therapies. The enzyme involved is sterol 14[alpha]-demethylase, which is found in several phyla. In mammals, it converts lanosterol into the meiosis-activating sterols (MAS) which regulate or modify cell division. These precursors of cholesterol have been discovered to moderate the development of male and female germ (sexual) cells. Several metabolites of lanosterol have been regarded only as precursors of cholesterol without any biological function in animals. This view dramatically changed recently with the observation that FF-MAS isolated from human follicle fluid and T-MAS isolated from bull testis as well as the MAS-412 and MAS-414 induced resumption of meiosis in cultivated mouse oocytes (Byskov et

Aromatase is another target enzyme of azole compounds. In steroidogenesis, it converts androgens into the corresponding oestrogens. The importance of androgens and oestrogens for the development of reproductive organs, for fertility, and in certain sex steroid-dependent diseases is well known. Therefore, azole compounds can be directed against aromatase to treat oestrogen-responsive diseases. Based on the inhibitory activity of azoles on key enzymes involved in sex steroid hormone synthesis, it is likely that effects on fertility, sexual behavior, and reproductive organ development will occur depending on dose level and duration of treatment of laboratory animals. Several azole compounds were shown to inhibit the aromatase and to disturb the balance of androgens and estrogens in vivo. In fact, the clinical use of azole compounds in estrogen-dependent diseases is based on this effect. Additionally, azole antifungals developed to inhibit the sterol 14[alpha]-demethylase of fungi and yeast in agriculture and medicine are also inhibiting aromatase. Therefore, these antifungals may unintentionally disturb the balance of androgens and estrogens. Until now, it is not clear whether this effect is compensated by an increased expression

of aromatase or by other unknown mechanisms.

The broad use of biologically active compounds in human therapy as well as in nonhuman applications may involve some risks, as exemplified by emerging antibiotic resistance. In agriculture, fungi and yeast are well known to develop resistance to azoles, and some molecular mechanisms of resistance development have been described. The significance of the agricultural azole resistance for human clinical antimycotic therapies has been discussed in Europe, but is not clarified yet. The actual target enzyme of azole antifungals, the fungal sterol 14[alpha]-demethylase, is expressed in many species including humans, and it is highly conserved through evolution. Hence, it seems reasonable to assume that most of the azole antifungals used in agriculture and medicine as well as azoles used in management of breast cancer also act as inhibitors on human sterol 14[alpha]-demethylase to an unknown extent. The toxicologic profiles of individual azole fungicides provide evidence for endocrine effects. In fact, many of these fungicides have effects on prostate, testis, uterus, and ovaries as well as on fertility, development, and sexual behavior. The current database does not allow us to establish causal relationships of these effects with inhibition of sterol 14[alpha]-demethylase and/or aromatase, but the overall view strongly suggests a connection with

disturbed steroidogenesis.
Zam et al; Environmental Health Perspectives - 3/1/2003

Some azoles have been associated $\dot{\text{with}}$ prolongation of the QT interval on the electrocardiogram.

Triazole pesticides all contain a triazole ring with nitrogen atoms at the 1,2 and 4 positions. 1,2,4-Triazole (1,2,4-T) and its conjugates, triazole alanine (TA), triazole acetic acid (TAA), triazole pyruvic acid, and triazole lactic acid are the metabolic products of plant, fungal and animal bioconversion. These compounds all possess potentially significant toxicological properties. Following application of a triazole-derivative fungicide, biological and/or chemical processes may cause the triazole ring to be released from the parent compound. In rats and livestock, 1,2,4-triazole is relatively stable and is the terminal form

of the triazole ring. In plants, the 1,2,4-triazole molecule may become conjugated to serine. The resulting compound, triazole alanine, may be oxidised to form triazole acetic acid. Triazole alanine and triazole acetic acid are the primary terminal forms of the triazole ring in plants, though some 1,2,4-triazole may remain. The degree of formation of any given form of the triazole ring is highly dependent on the nature and properties of the parent compound. Although other triazole conjugates such as triazole lactic acid and triazole pyruvate have been observed in plant metabolism studies, TA and TAA are the predominant conjugates that need to be included in the dietary risk assessment.

Although for most pesticides, mammals convert only a small proportion to free triazole (less than 25%), two compounds (tetraconazole and flusilazole) demonstrate relatively high conversion (68-77%) in rat metabolism studies.

Available acute data indicate that 1,2,4-triazole is slightly toxic by the oral route (with oral LD50 values ranging from 666 mg/kg in rabbits to 3650 mg/kg in mice) and slightly to moderately toxic by the dermal route (dermal LD50s were less than 2000 mg/kg in rabbits, and 3000-4000 mg/kg in rats). Limited available information indicates that 1,2,4-triazole is slightly irritating or non-irritating to the skin, but severely irritating to the eye. Based on the limited acute toxicity data, as well as the available developmental toxicity data (see below), it appears that rabbits may be substantially more susceptible to 1,2,4-triazole than are

Studies indicate that 1,2,4-triazole affects the central and peripheral nervous systems, reproductive tissues of both sexes, and the hematological system. Developmental and reproductive effects have been noted for this compound. Based on the available metabolism data from rats and livestock, 1,2,4-triazole may form in humans following exposure to parent triazole compounds.

Relative to triazole alanine, fewer studies are available depicting the toxicological effects of the other triazole conjugates. It is assumed that the triazole conjugates are all toxicologically equivalent to triazole alanine. The available studies found developmental skeletal effects, decreased body weight and body weight gain, and decreased leukocytes and triglycerides.

A number of target organs and critical effects have been identified. 1,2,4-triazole targets the nervous system, both central and peripheral, as brain lesions (most notably in the cerebellum) were seen in both rats and mice, and peripheral nerve degeneration was also seen in the subchronic neurotoxicity study in rats. In addition, brain weight decreases were seen in several studies, including in the offspring in the reproductive toxicity study. In the subchronic/neurotoxicity study, there is evidence that effects progress over time, with an increase in incidence of clinical signs (including tremors and muscle fasciculations) during weeks 8 and 13 that were not seen during earlier evaluations.

There is no evidence that exposure to triazole alanine results in neurotoxicity. No clinical signs of neurotoxicity, changes in brain weights, changes in brain gross or microscopic pathology, or any other neurotoxic effects were observed in the short-term rat studies, the subchronic rat and dog feeding studies, the rat developmental toxicity study, or the two-generation reproduction

Effects were also seen on reproductive organs in both sexes, most notably ovaries (in rats) and testes (in rats and mice), in both the reproductive toxicity and subchronic toxicity studies. Hematological changes, including slightly decreased hemoglobin and/or hematocrit, have also been seen in multiple studies and species (in rats at doses of 33 mg/kg/day and above, and in

mice at doses of 487 mg/kg/day and above).

1,2,4-triazole also causes developmental toxicity in both rats and rabbits, including malformations, at doses similar to those inducing maternal toxicity (decreased body weight gain in rats and clinical signs and mortality in rabbits). Developmental toxicity was also seen in the reproductive toxicity study, with offspring showing adverse effects on multiple endpoints (including decreased brain and body weight) at doses lower than those at which effects were seen in parents. In addition, reproductive toxicity was seen in both sexes: at the highest dose (3000 ppm), only two F1 litters (one pup/litter) were produced, and neither survived to adulthood.

Triazole alanine showed increased incidences of skeletal findings in the offspring at the mid and high doses, while no treatment-related effects were seen in the dams up to the limit dose. The skeletal findings included unossified odontoid processes at 300 and 1000 mg/kg/day, with partially ossified transverse processes of the 7th cervical vertebra (bilateral), unossified 5th sternebra, and partially ossified 13th thoracic centrum observed only at 1000 mg/kg/day.

Available mutagenicity data are limited but negative. A large number of parent triazole-derivative pesticides have been classified as carcinogens (most also non-mutagenic), but the relevance of that finding to expected effects of free triazole may be limited. The types of tumors associated with exposure to the parent chemicals are most commonly hepatocellular adenomas/carcinomas in mice. Other tumor types vary considerably (including liver tumors, thyroid tumors, ovarian tumors, testicular tumors, and bladder tumors). None of the tumor types are clearly associated with the proportion of free triazole formed in available rat metabolism studies. Evidence indicates that the parent triazole compounds appear to result in a tumor response subsequent to perturbation of liver metabolism, specifically xenobiotic and fatty acid metabolic pathways. In addition the thyroid response appears to be secondary to perturbation of thyroid homeostasis. Thus, the conazoles appear to drive a tumor response secondary to epigenetic effects and not from direct interaction with the DNA. An epigenetic mode of action would be consistent with a nonlinear process.

Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

Section 4 - FIRST AID MEASURES

SWALLOWED

- IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY,
- Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless
- For advice, contact a Poisons Information Center or a doctor.
- Urgent hospital treatment is likely to be needed.
- If conscious, give water to drink,
- INDUCE vomitting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

NOTE: Wear a protective glove when inducing vomiting by mechanical means.

In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive

- measures as indicated by the patient's condition.
- If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist.
- If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS.

EYE

- If this product comes in contact with the eyes:
- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally
 lifting the upper and lower lids.
- If pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin contact occurs:
- · Immediately remove all contaminated clothing, including footwear
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

INHALED

.

- If fumes or combustion products are inhaled remove from contaminated area.
- · Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket
 mask as trained. Perform CPR if necessary.
- · Transport to hospital, or doctor.

NOTES TO PHYSICIAN

- Following exposures to chlorphenoxy compounds:
- Acute toxic reactions are rare. The by-product of production, dioxin, may be implicated in subacute features such as hepatic enlargement, chloracne, neuromuscular symptoms and deranged porphyrin metabolism.
- Large intentional overdoses result in coma, metabolic acidosis, myalgias, muscle weakness, elevated serum creatine kinase, myoglobinuria, irritation of the skin, eyes, respiratory tract and gut and mild renal and hepatic dysfunction.
- Several cases of sensorimotor peripheral neuropathies have been associated with chronic dermal exposure to 2,4-D. For
 acute exposures the usual methods of gut and skin contamination (lavage, charcoal, cathartic) are recommended in the first
 several hours. Alkalization of the urine and generous fluid replacement have the added benefit of treating any
 myoglobinuria present. Monitor metabolic acidosis, hyperthermia, hyperkalemia, myoglobinuria and hepatic/renal
 dysfunction. for 2,4-dichlorophenoxyacetic acid (2,4-D) and its derivatives
- Gastric lavage if there are no signs of impending convulsions.
- Cautious administration of short-acting anticonvulsant drug if convulsions appear imminent.
- General supportive measures for central nervous system depression.
- If hypotension appears, search vigorously for a contributing cause (e.g. dehydration, electrolyte balance, acidosis, myocardial disturbances and hyperpyrexia).
- · As appropriate, treat dehydration, electrolyte disturbances, acidosis, and hyperexia.
- To promote excretion of 2,4-D, initiate alkaline diuresis, as in salicylate poisoning by injecting sodium bicarbonate, intravenously, until the urine pH exceeds 7.5 and then infuse mannitol; renal clearance rises sharply as urine pH rises above 7.5 above pH 8.0, it is said to be 100-fold greater than pH 6.0.
- If cardiac disturbances are suspected, monitor ECG continuously when possible. Prepare to deliver defibrillating shocks in the event of ventricular fibrillation.
- If hypotension intensifies, a trial with a vasopressor drug may be appropriate. Adrenalin (epinephrine) should be avoided because of possible fibrillation.
- If myotonia appears, a trial with quinidine may be helpful.
- Physiotherapy may be necessary for motion disorders associated with peripheral neuritis, myopathy or brain stem dysfunction.

GOSSELIN, SMITH HODGE: Clinical Toxicology of Commercial Products, 5th Ed.

In rats, triadimenol is metabolised mainly by oxidation to the tert-butyl moiety to the corresponding alcohol and then carboxylic acid. A small fraction of these compounds is conjugated. Oxidation at the hydroxyl group to the keto compound triadimefon is of little consequence.

Section 5 - FIRE FIGHTING MEASURES				
Vapour Pressure (mmHG):	<1 mPa			
Upper Explosive Limit (%):	Not available			
Specific Gravity (water=1):	Not available			
Lower Explosive Limit (%):	Not available			

EXTINGUISHING MEDIA

- Foam
- · Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- · Water spray or fog Large fires only.

FIRE FIGHTING

-

- Alert Emergency Responders and tell them location and nature of hazard.
- · Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), hydrogen chloride, phosgene, nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may

PERSONAL PROTECTION

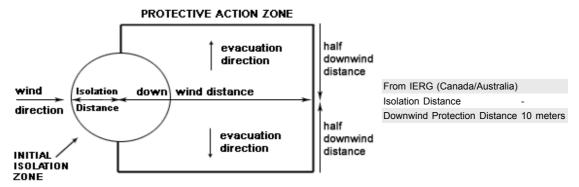
Glasses: Chemical goggles. Gloves: Respirator: Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Clean up waste regularly and abnormal spills immediately.
- Avoid breathing dust and contact with skin and eyes
- Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust.
- Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- Dampen with water to prevent dusting before sweeping.
- Place in suitable containers for disposal.

Environmental hazard - contain spillage.


MAJOR SPILLS

■ Environmental hazard - contain spillage.

Moderate hazard.

- CAUTION: Advise personnel in area.
- Alert Emergency Responders and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services

PROTECTIVE ACTIONS FOR SPILL

FOOTNOTES

1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.

distance equal to the downwind protective action distance.

2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.

3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.

4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking package of a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder.

5 Guide 171 is taken from the US DOT emergency response guide book.

6 IERG information is derived from CANUTEC - Transport Canada.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could

experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

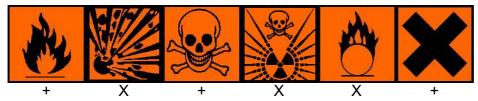
Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.
Do NOT cut, drill, grind or weld such containers

- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.


RECOMMENDED STORAGE METHODS

- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

■ Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

- X: Must not be stored together
- O: May be stored together with specific preventions
- +: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m³		Peak mg/m³	TWA F/CC	Notes
US - Oregon Permissible Exposure Limits (Z3)	triadimenol (Inert or Nuisance Dust: (d) Total dust)		10				*
US OSHA Permissible Exposure Levels (PELs) - Table Z3	triadimenol (Inert or Nuisance Dust: (d) Respirable fraction)		5				
US OSHA Permissible Exposure Levels (PELs) - Table Z3	triadimenol (Inert or Nuisance Dust: (d) Total dust)		15				
US - Hawaii Air Contaminant Limits	triadimenol (Particulates not other wise regulated - Total dust)		10				
US - Hawaii Air Contaminant Limits	triadimenol (Particulates not other wise regulated - Respirable fraction)		5				
US - Oregon Permissible Exposure Limits (Z3)	triadimenol (Inert or Nuisance Dust: (d) Respirable fraction)		5				*
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	triadimenol (Particulates not otherwise regulated Respirable fraction)		5				
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	triadimenol (Particulates not otherwise regulated (PNOR)(f)-Respirable fraction)		5				
US - Michigan Exposure Limits for Air Contaminants	triadimenol (Particulates not otherwise regulated, Respirable dust)		5				

MATERIAL DATA

TRIADIMENOL:

■ It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there

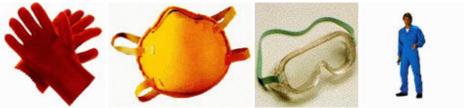
is evidence of health effects at airborne concentrations encountered in the workplace.

At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborné concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:


- cause inflammation
- cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

Limited under EC Directive on Drinking Water Quality 80/778/EEC Pesticides:

maximum admissible concentration 0.1 ug/l

Included in Schedule 6 (Release into Land: Prescribed Substances) Statutory.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses.

HANDS/FEET

■ Wear chemical protective gloves, eg. PVC. Wear safety footwear or safety gumboots, eg. Rubber.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

OTHER

- Overalls.
- P.V.C. apron. Barrier cream.
- Skin cleansing cream.
- Eve wash unit

- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions

RESPIRATOR

Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
10 x PEL	P1	-	PAPR-P1
	Air-line*	-	-
50 x PEL	Air-line**	P2	PAPR-P2

100 x PEL P3 Air-line* 100+ x PEL PAPR-P3 Air-line*

- Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.

Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume. Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of:
- (a): particle dust respirators, if necessary, combined with an absorption cartridge;
- (b): filter respirators with absorption cartridge or canister of the right type;

(c): fresh-air hoods or masks

- Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminan

Type of Contaminant: direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). Within each range the appropriate value depends on: Lower and of the range.	velocities of fresh circulating all required to emolerity remove	the contaminant.
conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). Within each range the appropriate value depends on: 1-2.5 m/s (200-500 f/min.) 2.5-10 m/s (500-2000 f/min.)	Type of Contaminant:	Air Speed:
generated dusts (released at high initial velocity into zone of 2.5-10 m/s (500-2000 f/min.) very high rapid air motion). Within each range the appropriate value depends on:	conveyer loading, crusher dusts, gas discharge (active	1-2.5 m/s (200-500 f/min.)
•	generated dusts (released at high initial velocity into zone of	2.5-10 m/s (500-2000 f/min.)
Lower and of the range	Within each range the appropriate value depends on:	
Lower end of the range	Lower end of the range	Upper end of the range

Lower end of the range	Upper end of the range
1: Room air currents minimal or favorable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity
Or laterarithmet lass and destina	O. Historia de disconsidera de la constanta de
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid.

Does not mix with water

DOES HOLIHIK WILLI WALEL.			
State	Divided solid	Molecular Weight	295.80
Melting Range (°F)	244.4 - 266	Viscosity	Not available
Boiling Range (°F)	Not available	Solubility in water (g/L)	Partly miscible
Flash Point (°F)	Not available	pH (1% solution)	Not applicable
Decomposition Temp (°F)	Not available	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available	Vapour Pressure (mmHG)	<1 mPa
Upper Explosive Limit (%)	Not available	Specific Gravity (water=1)	Not available
Lower Explosive Limit (%)	Not available	Relative Vapor Density (air=1)	>1
Volatile Component (%vol)	Negligible	Evaporation Rate	Not applicable

APPEARANCE

Colourless crystals with weak characteristic odour; does not mix well with water. The technical grade occurs as a mixture of diastereoisomers (A and B) in the ratio 7:3. Solubilities in water (mg/l): Diastereoisomer A 1200, Diastereoisomer B 1900 Other solvents (g/l) for Diastereoisomer A: dichloromethane, isopropanol 100-200, hexane 0.1-1.0, toluene 20-50 for Diastereoisomer B: dichloromethane, isopropanol 100-200, hexane 0.1-1.0, toluene 10-20 Melting Points (deg. C.): A: 138.2; B: 13.5: Eutectic

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

triadimenol

TOXICITY AND IRRITATION

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY **IRRITATION**

Oral (rat) LD50: 3800 mg/kg Skin (rabbit): non-irritant**

Oral (rat) LD50: 1720-3700 mg/kg** **[Bayer]

Inhalation (rat) LD50: 3060 mg/m³ Inhalation (rat) LC50: >0.9 mg/l/4h *

Dermal (rat) LD50: >5000 mg/kg

■ For chlorophenoxy pesticides:.

WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans.

Side-reactions during manufacture of the parent compound may result in the production of trace amounts of polyhalogenated aromatic hydrocarbon(s). Halogenated phenols, and especially their alkali salts, can condense above 300 deg. C . to form polyphenoxyphenols or, in a very specific reaction, to form dibenzo-p-dioxins.

Polyhalogenated aromatic hydrocarbons (PHAHs) can cause effects on hormones and mimic thyroid hormone. Acne, discharge

in the eye, eyelid swellings and visual disturbances may occur. Babies born to exposed mothers can also exhibit these effects.

There is an increased risk of liver cancer among those who have taken PHAHs. Oral (rat) LD50: 700 mg/kg (approx). * Eye (rabbit): non-irritating * Oral (mouse) LD50: 1300 mg/kg (approx) * * The Pesticide Manual NOEL (2 y) for rats and mice 125 mg/kg, dogs 600 mg/kg diet. ADI 0.05 mg/kg
Toxicity class WHO III; EPA III

for chlorophenoxy herbicides:

CARCINOGEN

TRIADIMENOL (BAYTAN) US Environmental Defense Scorecard Suspected Carcinogens Reference(s) OPP-CAN

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

TRIADIMENOL:

- Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.
- Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.
■ Triazole fungicides share common metabolites, the triazole compounds 1,2,4-triazole (free triazole), triazole alanine, and triazole acetic acid, In environmental fate studies, all three forms of triazole (1,2,4-T, TA, and TAA) have been found and there is evidence that the three can inter-convert in soil and aquatic systems

As a plant metabolite, and given the wide use of triazole-derivative pesticides (used as fungicides on many crops as well as on turf) free triazole is found in a variety of food commodities, including animal byproducts. 1,2,4-triazole appears to be relatively stable in the environment, and may be found in rotational crops as well as in water.

Studies indicate that 1,2,4-triazole affects the central and peripheral nervous systems, reproductive tissues of both sexes, and the hematological system. Developmental and reproductive effects have been noted for this compound. Based on the available metabolism data from rats and livestock, 1,2,4-triazole may form in humans following exposure to parent triazole compounds. The available studies on triazole conjugates found developmental skeletal effects, decreased body weight and body weight gain, and decreased leukocytes and triglycerides following exposure in animals.

■ For azole-containing substances.

Azole fungicides and systemically used antifungal drugs directly interfere with steroidogenesis by acting as potent inhibitors of steroidogenic enzymes and are known to cause endocrine disruption mainly via this mechanism.

An important P450 enzyme involved in the steroidogenesis is aromatase. Aromatase demethylates C10 and specifically converts androstenedione and testosterone. On the protein level, the amino acid sequence homology between aromatase from fish and humans is about 50% and between rats and humans is about 78%. In mammals, aromatase is mainly expressed in the brain and the gonads, but it is also found in placental, adipose, and bone tissue. The physiologic balance between different sex steroid hormones is crucial for the development, maintenance, and function of the reproductive system as well as for the differentiation of the sexual phenotype during ontogeny. Oestrogens (estrone and estradiol) are products of the androgens (androstenedione and testosterone), and the reaction is catalysed by aromatase. In mammals, differentiation of the male phenotype depends not only on testosterone but also on estradiol generated from testosterone by neuronal aromatase in central nervous system. Therefore, disturbances in aromatase expression and/or changes in its catalytic activity are expected to exhibit negative effects on reproduction parameters.

Azole-containing compounds produce profound effects in the environment. In part this is due to inhibition of several enzyme systems including those involving sterol 14[alpha]-demethylase. Sterol 14[alpha]-demethylase is a member of the superfamily of haeme-containing cytochrome P450 enzymes involved in metabolism of endogenous and xenobiotic substances. The antifungal effect of azoles is due to inhibition of sterol 14[alpha]-demethylase in fungi and yeast, thereby blocking the biosynthesis of ergosterol The subsequent lack of ergosterol is detrimental because ergosterol is an essential sterol component in the membranes of fungi and yeast. Sterol 14[alpha]-demethylase is not only expressed in fungi and yeast but is also found in many other species ranging from bacteria to mammals. In plants, the sterol 14[alpha]-demethylase reaction metabolises obtusifoliol and provides precursors for biosynthesis of phytosterols. In animals, the sterol 14[alpha]-demethylase reaction is

part of the metabolic pathway leading to biosynthesis of cholesterol. Cholesterol in turn is the substrate for the production of

many other sterols (e.g., the sex steroid hormones). The DNA sequences encoding sterol 14[alpha]-demethylase of many fungi and yeast are known, as well as the sequences of mice, rats, pigs, and humans. On the protein level, the amino acid sequences are highly conserved along the phylogenetic tree. This fact is considered by many authors as an indication of the pivotal role of sterol 14[alpha]-demethylase in all organisms. The homology of the amino acid sequence level between rats and humans is 93% and 40% between fungi and humans. In humans, the sterol 14[alpha]-demethylase is expressed in many different tissues.

The group of acidic herbicides, including the phenoxy acids, possess functional groups that ionize in aqueous systems yielding pKa values of less than 4. The behavior of these materials is closely correlated with their acid character. The most significant factor with respect to soil mobility is the organic content of the soil which readily absorbs these compounds. Furthermore in acidic systems these compounds are also absorbed by clay particles. The esters and ethers are expected to behave differently from the acid forms although hydrolysis may influence subsequent binding. In general the esters and ethers are considered non-persistent in the environment.

■ DO NOT discharge into sewer or waterways.

Environmental fate:

After seed treatment and spray application, triadimenol is metabolised by conjugation with sugars (in particular hexose) and oxidised at the tert-butyl moiety which is further conjugated. After seed treatment additional breakdown reactions of importance produce the 1,2,4-triazole in soil by hydrolysis: this is taken up by plants via the roots and conjugated with various endogenous substances.

Soil and water: In soil degradation, involving hydrolic cleavage leads to the formation of 4-chlorophenol. Metabolism of the diasteroisomers proceeds at different rates: DT50 in sandy loam 110-375 d; in loam 240-270 d

Both diastereoisomers are resistant to hydrolysis

DT50 (22 C) >1 year (pH 3,6,or 9) log Kow: 3.279 Half-life (hr) H2O surface water: 8760

Half-life (hr) soil: 2640-9000

Ecotoxicology:

Birds: Acute oral LD50 for bobwhite quail >2000 mg/kg

Fish LC50 for golden orfe 17.4-27.4 mg/l, rainbow trout 14-23.5,

bluegill sunfish 15 mg/l Bees: Non-toxic to honeybees. Daphnia EC50 (48 h) 51 mg/l

Ecotoxicity

Ingredient Persistence: Water/Soil Persistence: Air

triadimenol HIGH Bioaccumulation LOW

Mobility MED

Section 13 - DISPOSAL CONSIDERATIONS

US EPA Waste Number & Descriptions

B. Component Waste Numbers

When triadimenol is present as a solid waste as a discarded commercial chemical product, off-specification species, as a container residue, or a spill residue, use EPA waste number U240 (waste code T).

For discarded unused formulations containing triadimenol use hazardous waste number F027

When triadimenol is present as a solid waste as a discarded commercial chemical product, off-specification species, as a container residue, or a spill residue, use EPA waste number U240 (waste code T).

For discarded unused formulations containing triadimenol use hazardous waste number F027

When triadimenol is present as a solid waste as a discarded commercial chemical product, off-specification species, as a container residue, or a spill residue, use EPA waste number U240 (waste code T).

For discarded unused formulations containing triadimenol use hazardous waste number F027

When triadimenol is present as a solid waste as a discarded commercial chemical product, off-specification species, as a container residue, or a spill residue, use EPA waste number U240 (waste code T).

For discarded unused formulations containing triadimenol use hazardous waste number F027

When triadimenol is present as a solid waste as a discarded commercial chemical product, off-specification species, as a container residue, or a spill residue, use EPA waste number U240 (waste code T).

For discarded unused formulations containing triadimenol use hazardous waste number F027

When triadimenol is present as a solid waste as a discarded commercial chemical product, off-specification species, as a container residue, or a spill residue, use EPA waste number U240 (waste code T).

For discarded unused formulations containing triadimenol use hazardous waste number F027

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

| Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

DOT:

Symbols: G Hazard class or Division: 9 Identification Numbers: UN3077

8, 146, 335, B54, IB8, IP3, N20, T1, TP33 Label Codes: 9 Special provisions:

Packaging: Exceptions: 155 Packaging: Non-bulk:

Quantity limitations: No limit Packaging: Exceptions: 155 Passenger aircraft/rail:

Quantity Limitations: Cargo No limit Vessel stowage: Location: Α aircraft only

Vessel stowage: Other: None

Hazardous materials descriptions and proper shipping names:

Environmentally hazardous substance, solid, n.o.s

Air Transport IATA:

ICAO/IATA Subrisk: ICAO/IATA Class: 9 UN/ID Number: 3077 Packing Group: Ш A97 Special provisions:

Shipping Name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. *(CONTAINS TRIADIMENOL)

Maritime Transport IMDG:

IMDG Class: IMDG Subrisk: None UN Number: 3077 Packing Group Ш EMS Number: 274 909 944 F-A.S-F Special provisions:

Limited Quantities: 5 kg

Shipping Name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.(contains triadimenol)

Section 15 - REGULATORY INFORMATION

triadimenol (CAS: 55219-65-3,89482-17-7,82200-72-4) is found on the following regulatory lists; "OECD Representative List of High Production Volume (HPV) Chemicals"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Cumulative effects may result following exposure*.
- May produce discomfort of the eyes*
- May possibly affect fertility*
- May possibly be harmful to the fetus/ embryo*.
- Possible risk of harm to breastfed babies*.

 * (limited oxidence)
- (limited evidence)

Ingredients with multiple CAS Nos

Ingredient Name triadimenol

55219-65-3, 89482-17-7, 82200-72-4

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: May-18-2008 Print Date:Apr-21-2010