Material Safety Data Sheet

Vecuronium Bromide
sc-205880

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Vecuronium Bromide

STATEMENT OF HAZARDOUS NATURE

NFPA

SUPPLIER
Santa Cruz Biotechnology, Inc.
2145 Delaware Avenue
Santa Cruz, California 95060
800.457.3801 or 831.457.3800

EMERGENCY
ChemWatch
Within the US & Canada: 877–715–9305
Outside the US & Canada: +800 2436 2255
(1–800-CHEMCALL) or call +613 9573 3112

SYNONYMS
C34-H57-Br-N2-O4, "1-[(2beta, 3alpha, 5alpha, 16beta, 17beta)-3, 17-bis(acetyloxy)-2-(1-"piperidinyl)androstan-16-yl]-1-methylpiperidinium bromide", "[(2S, 3S, 5S, 8R, 9S, 10S, 13S, 14S, 16S, 17R)-3-acetyloxy-10, 13-dimethyl-"16-(1-methylpiperidin-1-ium-1-yl)]-2-piperidin-1-yl-2, 3, 4, 5, 6, 7, "8, 9, 11, 12, 14, 15, 16, 17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-"y] acetate bromide", Musculax, Norcuron, "neuromuscular blocking agent", "non-polarising agent"

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Toxicity</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Body Contact</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Reactivity</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

CANADIAN WHMIS SYMBOLS

Min/Nil=0
Low=1
Moderate=2
High=3
Extreme=4
EMERGENCY OVERVIEW

RISK
Harmful to aquatic organisms.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED
■ Bromide poisoning causes intense vomiting so the dose is often removed.
■ Effects include drowsiness, irritability, inco-ordination, vertigo, confusion, mania, hallucinations and coma.
■ Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.
■ Tubocurarine and its structural analogues rarely produces side-effects at levels employed during anaesthesia but in overdose may cause respiratory failure (by paralysing intercostal muscles and the diaphragm) and hypotension.
■ Regurgitation of stomach contents may also occur as a result of relaxation of the oesophageal muscle and sphincters.

EYE
■ Although the material is not thought to be an irritant, direct contact with the eye may cause transient discomfort characterized by tearing or conjunctival redness (as with windburn).
■ Slight abrasive damage may also result.

SKIN
■ The material is not thought to be a skin irritant (as classified using animal models).
■ Abrasive damage however, may result from prolonged exposures.
■ Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.
■ Open cuts, abraded or irritated skin should not be exposed to this material.
■ Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects.
■ Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED
■ The material is not thought to produce respiratory irritation (as classified using animal models).
■ Nevertheless inhalation of dusts, or fume, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress.
■ Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual.
■ Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS
■ Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.
■ There is limited evidence that, skin contact with this product is more likely to cause a sensitization reaction in some persons compared to the general population.
■ There is some evidence that human exposure to the material may result in developmental toxicity. This evidence is based on animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects.
■ Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung.
■ Chronic intoxication with ionic bromides, historically, has resulted from medical use of bromides but not from environmental or occupational exposure; depression, hallucinosis, and schizophreniform psychosis can be seen in the absence of other signs of intoxication. Bromides may also induce sedation, irritability, agitation, delirium, memory loss, confusion, disorientation, forgetfulness (aphasias), dysarthria, weakness, fatigue, vertigo, stupor, coma, decreased appetite, nausea and vomiting, diarrhoea, hallucinations, an acme like rash on the face, legs and trunk, known as bromoderma (seen in 25-30% of case involving bromide ion), and a profuse discharge from the nostrils (coryza).
■ Ataxia and generalised hyperreflexia have also been observed. Correlation of neurologic symptoms with blood levels of bromide is inexact.
■ The use of substances such as brompheniramine, as antihistamines, largely reflect current day usage of bromides; ionic bromides have been largely withdrawn from therapeutic use due to their toxicity. Several cases of foetal abnormalities have been described in mothers who took large doses of bromides during pregnancy.
■ Exposure to small quantities may induce hypersensitivity reactions characterized by acute bronchospasm, hives (urticaria), deep dermal wheals (angioneurotic edema), running nose (rhinitis) and blurred vision. Anaphylactic shock and skin rash (non-thrombocytopenic purpura) may occur.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>NAME</th>
<th>CAS RN</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>vecuronium bromide</td>
<td>50700-72-6</td>
<td>&gt;98</td>
</tr>
</tbody>
</table>

Section 4 - FIRST AID MEASURES
SWALLOWED
· Give a slurry of activated charcoal in water to drink. NEVER GIVE AN UNCONSCIOUS PATIENT WATER TO DRINK. · At least 3 tablespoons in a glass of water should be given.

EYE
· If this product comes in contact with the eyes: · Immediately hold eyelids apart and flush the eye continuously with running water. · Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

SKIN
· If skin contact occurs: · Immediately remove all contaminated clothing, including footwear · Flush skin and hair with running water (and soap if available).

INHALED
· If fumes or combustion products are inhaled remove from contaminated area. · Lay patient down. Keep warm and rested.

NOTES TO PHYSICIAN
· For neuromuscular blocking agents:
· Overdosage with neuromuscular blocking agents may result in neuromuscular block beyond the time needed for surgery and anesthesia. Neuromuscular blocking agents may have a profound effect in patients with neuromuscular diseases (e.g., myasthenia gravis and the myasthenic syndrome). In these and other conditions in which prolonged neuromuscular block is a possibility (e.g., carcinomatosis), ensure a peripheral nerve stimulator is available.
· The primary treatment is maintenance of a patent airway and controlled ventilation until recovery of normal neuromuscular function is assured.
· Once evidence of recovery from neuromuscular block is observed, further recovery may be facilitated by administration of an anticholinesterase agent (e.g., neostigmine, edrophonium) in conjunction with an appropriate anticholinergic agent (see Antagonism of Neuromuscular Block subsection below).
· Overdosage with neuromuscular blocking agents may result in neuromuscular block beyond the time needed for surgery and anesthesia. The primary treatment is maintenance of a patent airway and controlled ventilation until recovery of normal neuromuscular function is assured. Once recovery from neuromuscular block begins, further recovery may be facilitated by administration of an anticholinesterase agent (e.g., neostigmine, edrophonium) in conjunction with an appropriate anticholinergic agent such as atropine.
· The possibility of iatrogenic overdosage can be minimised by carefully monitoring muscle twitch response to peripheral nerve stimulation. Overdosage may increase the risk of histamine release and cardiovascular effects, especially hypotension. If cardiovascular support is necessary, this should be done with proper positioning, fluid administration, and the use of vasopressor agents if necessary. A longer duration of neuromuscular blockade may result from overdosage and a peripheral nerve stimulator should be used to monitor recovery.
· Antagonism of Neuromuscular Block: Antagonists (such as neostigmine and edrophonium) should not be administered when complete neuromuscular block is evident or suspected. The use of a peripheral nerve stimulator to evaluate recovery and antagonism of neuromuscular block is recommended.
· Patients administered antagonists should be evaluated for adequate clinical evidence of antagonism, e.g., 5-second head lift and grip strength. Ventilation must be supported until no longer required.
· Antagonism may be delayed in the presence of debilitation, carcinomatosis, and the concomitant use of certain broad spectrum antibiotics, or anesthetic agents and other drugs which enhance neuromuscular block or separately cause respiratory depression. Under such circumstances the management is the same as that of prolonged neuromuscular block.
· Patients with burns have been shown to develop resistance to nondepolarizing neuromuscular blocking agents, including atracurium. The extent of altered response depends upon the size of the burn and the time elapsed since the burn injury.
· Patients with hemiparesis or paraparesis also may demonstrate resistance to nondepolarizing muscle relaxants in the affected limbs. To avoid inaccurate dosing, neuromuscular monitoring should be performed on a non-paretic limb.
· Acid-base and/or serum electrolyte abnormalities may potentiate or antagonize the action of neuromuscular blocking agents.
· Antagonism may result from overdosage and a peripheral nerve stimulator should be used to monitor recovery.
· Antagonism of Neuromuscular Block: Antagonists (such as neostigmine and edrophonium) should not be administered when complete neuromuscular block is evident or suspected. The use of a peripheral nerve stimulator to evaluate recovery and antagonism of neuromuscular block is recommended.

Section 5 - FIRE FIGHTING MEASURES

<table>
<thead>
<tr>
<th>Property</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapour Pressure (mmHg)</td>
<td>Negligible</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Specific Gravity (water=1)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

EXTINGUISHING MEDIA
· Foam.
· Dry chemical powder.

FIRE FIGHTING
· Alert Emergency Responders and tell them location and nature of hazard.
· Wear full body protective clothing with breathing apparatus.
When any large container (including road and rail tankers) is involved in a fire, consider evacuation by 800 metres in all directions.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS
· Combustible solid which burns but propagates flame with difficulty.
· Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular
hazard; accumulations of fine dust may burn rapidly and fiercely if ignited. Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), hydrogen bromide, nitrogen oxides (NOx), other pyrolysis products typical of burning organic material. May emit poisonous fumes.

**FIRE INCOMPATIBILITY**

- Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

**PERSONAL PROTECTION**

- Glasses:
- Gloves:
- Respirator:
- Particulate

---

**Section 6 - ACCIDENTAL RELEASE MEASURES**

**MINOR SPILLS**

- Clean up waste regularly and abnormal spills immediately.
- Avoid breathing dust and contact with skin and eyes.
- Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust.
- Vacuum up or sweep up. **NOTE:** Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- Dampen with water to prevent dusting before sweeping.
- Place in suitable containers for disposal.

**MAJOR SPILLS**

- Clear area of personnel and move upwind.
- Alert Emergency Responders and tell them location and nature of hazard.

---

**Section 7 - HANDLING AND STORAGE**

**PROCEDURE FOR HANDLING**

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.
- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

**RECOMMENDED STORAGE METHODS**

- Glass container.
- Lined metal can, Lined metal pail/drum
- Plastic pail.
- For low viscosity materials
- Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.

**STORAGE REQUIREMENTS**

- Store in original containers.
- Keep containers securely sealed.

---

**Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION**

**EXPOSURE CONTROLS**

The following materials had no OELs on our records

- vecuronium bromide: CAS:50700-72-6

**PERSONAL PROTECTION**

- **Respirator**
  - Particulate
  - Consult your EHS staff for recommendations
PHYSICAL PROPERTIES

HEPA terminated local exhaust ventilation should be considered at point of generation of dust, fumes or vapors.
Enclosed local exhaust ventilation is required at points of dust, fume or vapor generation.
· Ensure gloves are protective against solvents in use.
    If the enclosure is validated for use.
· In situations where this is not feasible (may include animal dosing), an air-purifying respirator is to be used.
· Solutions used for procedures where aerosolisation may occur (e.g., vortexing, pumping) are to be handled within a containment system or without local exhaust ventilation during procedures with no potential for aerosolisation. If the procedures have a potential for aerosolisation, an air-purifying respirator is to be worn by all personnel in the immediate area.
· Ensuring gloves are protective against solvents in use.

ENGINEERING CONTROLS

· For Emergencies: Vinyl suit.
· Ensure there is ready access to an emergency shower.
· Eye wash unit.
· For manufacturing operations, air-supplied full body suits may be required for the provision of advanced respiratory protection.
· For quantities over 1 kilogram and manufacturing operations, wear disposable coverall of low permeability and protective shoe covers at collar and cuffs.
· For quantities up to 1 kilogram a disposable laboratory coat or coverall of low permeability is recommended.
· For quantities up to 500 grams a laboratory coat may be suitable.
· PVC gloves.
· Protective shoe covers.
· Head covering.

OTHER

· For quantities up to 500 grams a laboratory coat may be suitable.
· For quantities up to 1 kilogram a disposable laboratory coat or coverall of low permeability is recommended. Coveralls should be buttoned at collar and cuffs.
· For quantities over 1 kilogram and manufacturing operations, wear disposable coverall of low permeability and disposable shoe covers.
· For manufacturing operations, air-supplied full body suits may be required for the provision of advanced respiratory protection.
· Eye wash unit.
· Ensure there is ready access to an emergency shower.
· For Emergencies: Vinyl suit.

EYE

· For laboratory, larger scale or bulk handling or where regular exposure in an occupational setting occurs:
   · Chemical goggles
   · Face shield. Full face shield may be required for supplementary but never for primary protection of eyes
   · Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59].

HANDS/FEET

· NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
   · frequency and duration of contact,
   · chemical resistance of glove material,
   · glove thickness and
   · dexterity
Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
· When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
· When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
· Contaminated gloves should be replaced.
Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
· Rubber gloves (nitrile or low-protein, powder-free latex). Employees allergic to latex gloves should use nitrile gloves in preference.
· Double gloving should be considered.
· PVC gloves.
· Protective shoe covers.
· Head covering.

SOLUTIONS HANDLING:

· Powder handling operations are to be done in a powder weighing hood, a glove box, or other equivalent ventilated containment system.
   · In situations where these ventilated containment hoods have not been installed, a non-ventilated enclosed containment hood should be used.
   · Pending changes resulting from additional air monitoring data, up to 300 mg can be handled outside of an enclosure provided that no grinding, crushing or other dust-generating process occurs.
   · An air-purifying respirator should be worn by all personnel in the immediate area in cases where non-ventilated containment is used, where significant amounts of material (e.g., more than 2 grams) are used, or where the material may become airborne (as through grinding, etc.).
   · Powder should be put into solution or a closed or covered container after handling.
   · If using a ventilated enclosure that has not been validated, wear a half-mask respirator equipped with HEPA cartridges until the enclosure is validated for use.

HANDS/FEET

· Powder should be put into solution or a closed or covered container after handling.
· For quantities over 1 kilogram and manufacturing operations, wear disposable coverall of low permeability and protective shoe covers at collar and cuffs.
· For quantities up to 1 kilogram a disposable laboratory coat or coverall of low permeability is recommended.
· For quantities up to 500 grams a laboratory coat may be suitable.
· PVC gloves.
· Protective shoe covers.
· Head covering.

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
· When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
· When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
· Contaminated gloves should be replaced.
Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
· Rubber gloves (nitrile or low-protein, powder-free latex). Employees allergic to latex gloves should use nitrile gloves in preference.
· Double gloving should be considered.
· PVC gloves.
· Protective shoe covers.
· Head covering.

ENGINEERING CONTROLS

· For potent pharmacological agents:
  Powders
  To prevent contamination and overexposure, no open handling of powder should be allowed.
  · Powder handling operations are to be done in a powders weighing hood, a glove box, or other equivalent ventilated containment system.
  · In situations where these ventilated containment hoods have not been installed, a non-ventilated enclosed containment hood should be used.
  · Pending changes resulting from additional air monitoring data, up to 300 mg can be handled outside of an enclosure provided that no grinding, crushing or other dust-generating process occurs.
  · An air-purifying respirator should be worn by all personnel in the immediate area in cases where non-ventilated containment is used, where significant amounts of material (e.g., more than 2 grams) are used, or where the material may become airborne (as through grinding, etc.).
  · Powder should be put into solution or a closed or covered container after handling.
  · If using a ventilated enclosure that has not been validated, wear a half-mask respirator equipped with HEPA cartridges until the enclosure is validated for use.

SOLUTIONS HANDLING:

· Solutions can be handled outside a containment system or without local exhaust ventilation during procedures with no potential for aerosolisation. If the procedures have a potential for aerosolisation, an air-purifying respirator is to be worn by all personnel in the immediate area.
· Solutions used for procedures where aerosolisation may occur (e.g., vortexing, pumping) are to be handled within a containment system or with local exhaust ventilation.
· In situations where this is not feasible (may include animal dosing), an air-purifying respirator is to be worn by all personnel in the immediate area. If using a ventilated enclosure that has not been validated, wear a half-mask respirator equipped with HEPA cartridges until the enclosure is validated for use.
· Ensure gloves are protective against solvents in use.
Enclosed local exhaust ventilation is required at points of dust, fume or vapor generation.
HEPA terminated local exhaust ventilation should be considered at point of generation of dust, fumes or vapors.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

<table>
<thead>
<tr>
<th>PHYSICAL PROPERTIES</th>
<th>State</th>
<th>Divided Solid</th>
<th>Molecular Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>637.73</td>
</tr>
</tbody>
</table>
### Melting Range (°F)
441 - 444

### Viscosity
Not Applicable

### Boiling Range (°F)
Not Applicable

### Solubility in water (g/L)
Partly Miscible

### Flash Point (°F)
Not Available

### pH (1% solution)
Not Applicable

### Decomposition Temp (°F)
Not Available

### pH (as supplied)
Not Applicable

### Autoignition Temp (°F)
Not Available

### Vapour Pressure (mmHG)
Negligible

### Upper Explosive Limit (%)
Not Available

### Specific Gravity (water=1)
Not Available

### Lower Explosive Limit (%)
Not Available

### Relative Vapor Density (air=1)
Not Applicable

### Volatile Component (%vol)
Negligible

### Evaporation Rate
Not Applicable

### APPEARANCE
Crystalline solid; does not mix well with water.

### Section 10 - CHEMICAL STABILITY

**CONDITIONS CONTRIBUTING TO INSTABILITY**
- Presence of incompatible materials.
- Product is considered stable.

**STORAGE INCOMPATIBILITY**

- Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

### Section 11 - TOXICOLOGICAL INFORMATION

**vecuronium bromide**

**TOXICITY AND IRRITATION**

**VECURRENIUM BROMIDE:**

- unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

<table>
<thead>
<tr>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral (Human) TDL0: 0.13 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Oral (Rat) LD50: 455 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Intraperitoneal (Rat) LD50: 2.63 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Subcutaneous (Rat) LD50: 1.73 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Intravenous (Rat) LD50: 0.2 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Oral (Mouse) LD50: 41 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Intraperitoneal (Mouse) LD50: 0.142 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Subcutaneous (Mouse) LD50: 0.148 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Intravenous (Mouse) LD50: 0.051 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Intravenous (Cat) TDL0: 0.04 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Intravenous (Human) TDL0: 0.1 mg/kg</td>
<td></td>
</tr>
</tbody>
</table>

- Most neuromuscular blocking agents facilitate histamine release in susceptible patients. Adverse reactions include skin flushing, transient hypotension, hypertension, tachycardia, bradycardia, bronchospasm and anaphylactoid reactions.

**CARCINOGEN**

<table>
<thead>
<tr>
<th>BROMINE COMPOUNDS (ORGANIC OR INORGANIC)</th>
<th>US Environmental Defense Scorecard Suspected Carcinogens</th>
<th>Reference(s)</th>
<th>P65-MC</th>
</tr>
</thead>
</table>

### Section 12 - ECOLOGICAL INFORMATION

Harmful to aquatic organisms.

This material and its container must be disposed of as hazardous waste.

### Section 13 - DISPOSAL CONSIDERATIONS

**Disposal Instructions**

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:
Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.

### Section 14 - TRANSPORTATION INFORMATION

**DOT:**
- Symbols: None
- Hazard class or Division: 6.1
- Identification Numbers: UN3249 PG: III
- Label Codes: 6.1 Special provisions: T1, TP33
- Packaging: Exceptions: 153 Packaging: Non-bulk: 213
- Packaging: Exceptions: 153 Quantity limitations: 5 kg
- Passenger aircraft/rail:
  - Quantity Limitations: Cargo 5 kg Vessel stowage: Location: C
- Vessel stowage: Other: 40

**Air Transport IATA:**
- ICAO/IATA Class: 6.1 ICAO/IATA Subrisk: None
- UN/ID Number: 3249 Packing Group: III
- Special provisions: A3
- Cargo Only
- Packaging Instructions: 200 kg Maximum Qty/Pack: 100 kg
- Passenger and Cargo Passenger and Cargo
- Packaging Instructions: 677 Maximum Qty/Pack: 670
- Passenger and Cargo Limited Quantity Passenger and Cargo Limited Quantity
- Packaging Instructions: 5 kg Maximum Qty/Pack: Y645
- Shipping Name: MEDICINE, SOLID, TOXIC, N.O.S.(CONTAINS VECURONIUM BROMIDE)

**Maritime Transport IMDG:**
- IMDG Class: 6.1 IMDG Subrisk: None
- UN Number: 3249 Packing Group: III
- EMS Number: F-A , S-A Special provisions: 221 223
- Limited Quantities: 5 kg
- Shipping Name: MEDICINE, SOLID, TOXIC, N.O.S. (contains vecuronium bromide)

### Section 15 - REGULATORY INFORMATION

Vecuronium bromide (CAS: 50700-72-6) is found on the following regulatory lists;
- "Canada Domestic Substances List (DSL)"

### Section 16 - OTHER INFORMATION

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.
- A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or