connexin 46 (C-20): sc-20859

The Power to Question

BACKGROUND

The connexin family of proteins form hexameric complexes called "connexons" that facilitate movement of low molecular weight proteins between cells via gap junctions. Connexin proteins share a common topology of four transmembrane α -helical domains, two extracellular loops, a cytoplasmic loop and cytoplasmic N- and C-termini. Many of the key functional differences arise from specific amino acid substitutions in the most highly conserved domains, the transmembrane and extracellular regions. Each of the approximately 20 connexin isoforms produces channels with distinct permeabilities and electrical and chemical sensitivities; therefore, one connexin usually cannot fully substitute for another. Consequently, a wide variety of malignant phenotypes associate with decreased connexin expression and gap junction communication, dependent on the particular connexin that is affected. For instance, deletion of the gene encoding connexin 46, normally expressed in the lens, produces severe cataracts.

REFERENCES

- Manjunath, C.K., Goings, G.E. and Page, E. 1987. Human cardiac gap junctions: isolation, ultrastructure, and protein composition. J. Mol. Cell. Cardiol. 19: 131-134.
- Grossman, H.B., Liebert, M., Lee, I.W. and Lee, S.W. 1994. Decreased connexin expression and intercellular communication in human bladder cancer cells. Cancer Res. 54: 3062-3065.
- 3. Harris, A.L. 2001. Emerging issues of connexin channels: biophysics fills the gap. Q. Rev. Biophys. 34: 325-472.
- Martinez-Wittinghan, F.J., Sellitto, C., Li, L., Gong, X., Brink, P.R., Mathias, R.T. and White, T.W. 2003. Dominant cataracts result from incongruous mixing of wildtype lens connexins. J. Cell Biol. 161: 969-978.

CHROMOSOMAL LOCATION

Genetic locus: GJA3 (human) mapping to 13q11-q12; GJA3 (mouse) mapping to 14 C2.

SOURCE

connexin 46 (C-20) is an affinity purified goat polyclonal antibody raised against a peptide mapping near the C-terminus of connexin 46 of human origin.

PRODUCT

Each vial contains 200 μg lgG in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

Blocking peptide available for competition studies, sc-20859 P, (100 μ g peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA).

STORAGE

Store at 4° C, **DO NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

APPLICATIONS

connexin 46 (C-20) is recommended for detection of connexin 46 of human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).

Suitable for use as control antibody for connexin 46 siRNA (h): sc-60431, connexin 46 shRNA Plasmid (h): sc-60431-SH and connexin 46 shRNA (h) Lentiviral Particles: sc-60431-V.

Molecular Weight of connexin 46: 53 kDa.

RECOMMENDED SECONDARY REAGENTS

To ensure optimal results, the following support (secondary) reagents are recommended: 1) Western Blotting: use donkey anti-goat IgG-HRP: sc-2020 (dilution range: 1:2000-1:100,000) or Cruz Marker™ compatible donkey anti-goat IgG-HRP: sc-2033 (dilution range: 1:2000-1:5000), Cruz Marker™ Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: sc-2333 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use donkey anti-goat IgG-FITC: sc-2024 (dilution range: 1:100-1:400) with UltraCruz™ Mounting Medium: sc-24941.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com or our catalog for detailed protocols and support products.

Try **connexin 46 (C-3): sc-365394** or **connexin 46 (E-10): sc-365393**, our highly recommended monoclonal alternatives to connexin 46 (C-20).

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 Fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com