Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
4-tert-Octylphenol

STATEMENT OF HAZARDOUS NATURE

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Toxicity</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Body Contact</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Reactivity</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

CANADIAN WHMIS SYMBOLS

1 of 12
EMERGENCY OVERVIEW

RISK
Harmful in contact with skin.
Irritating to skin.
Risk of serious damage to eyes.
May cause SENSITIZATION by skin contact.
Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED
- The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion.
- Accidental ingestion of the material may be damaging to the health of the individual.
- Some phenol derivatives can cause damage to the digestive system. If absorbed, profuse sweating, thirst, nausea, vomiting, diarrhea, cyanosis, restlessness, stupor, low blood pressure, gasping, abdominal pain, anemia, convulsions, coma and lung swelling can happen followed by pneumonia.

EYE
- The material can produce chemical burns to the eye following direct contact. Vapors or mists may be extremely irritating.
- If applied to the eyes, this material causes severe eye damage.
- Some phenol derivatives may produce mild to severe eye irritation with redness, pain and blurred vision. Permanent eye injury may occur; recovery may also be complete or partial.

SKIN
- Skin contact with the material may be harmful; systemic effects may result following absorption.
- The material can produce chemical burns following direct contact with the skin.
- This material can cause inflammation of the skin on contact in some persons.
- The material may accentuate any pre-existing dermatitis condition.
- Phenol and its derivatives can cause severe skin irritation if contact is maintained, and can be absorbed to the skin affecting the cardiovascular and central nervous system. Effects include sweating, intense thirst, nausea and vomiting, diarrhea, cyanosis, restlessness, stupor, low blood pressure, hyperventilation, abdominal pain, anemia, convulsions, coma, lung swelling followed by pneumonia.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED
- There is some evidence to suggest that this material, if inhaled, can irritate the throat and lungs of some persons.
- Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.
- If phenols are absorbed via the lungs, systemic effects may occur affecting the cardiovascular and nervous systems. Inhalation can result in profuse perspiration, intense thirst, nausea, vomiting, diarrhea, cyanosis, restlessness, stupor, falling blood pressure, hyperventilation, abdominal pain, anemia, convulsions, coma, swelling and inflammation of the lung.

CHRONIC HEALTH EFFECTS
- Skin contact with the material is more likely to cause a sensitization reaction in some persons compared to the general population.
- Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.
Exposure to the material may cause concerns for human fertility, on the basis that similar materials provide some evidence of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects, but which are not a secondary non-specific consequence of other toxic effects.

Long-term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung.

Long-term exposure to phenol derivatives can cause skin inflammation, loss of appetite and weight, weakness, muscle aches and pain, liver damage, dark urine, loss of nails, skin eruptions, diarrhea, nervous disorders with headache, salivation, fainting, discoloration of the skin and eyes, vertigo and mental disorders, and damage to the liver and kidneys.

Exposure to alkyl phenolics is associated with reduced sperm count and fertility in males.

Repeated or prolonged exposure to acids may result in the erosion of teeth, swelling and or ulceration of mouth lining. Irritation of airways to lung, with cough, and inflammation of lung tissue often occurs.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>NAME</th>
<th>CAS RN</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-tert-octylphenol</td>
<td>140-66-9</td>
<td>>98</td>
</tr>
</tbody>
</table>

Section 4 - FIRST AID MEASURES

SWALLOWED
- For advice, contact a Poisons Information Center or a doctor at once.
- Urgent hospital treatment is likely to be needed.

EYE
If this product comes in contact with the eyes
- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

SKIN
If skin or hair contact occurs
- Immediately flush body and clothes with large amounts of water, using safety shower if available.
- Quickly remove all contaminated clothing, including footwear.

INHALED
- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.

Inhalation of vapors or aerosols (mists, fumes) may cause lung edema. Corrosive substances may cause lung damage (e.g.

NOTES TO PHYSICIAN
- for corrosives

BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.

For acute or short term repeated exposures to phenols/ cresols
- Phenol is absorbed rapidly through lungs and skin. [Massive skin contact may result in collapse and death] *
- [Ingestion may result in ulceration of upper respiratory tract; perforation of esophagus and/or stomach, with attendant complications, may occur. Esophageal stricture may occur.]*

Section 5 - FIRE FIGHTING MEASURES

<table>
<thead>
<tr>
<th>Vapour Pressure (mmHG)</th>
<th>Negligible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not available</td>
</tr>
</tbody>
</table>
Specific Gravity (water=1) Not available
Lower Explosive Limit (%) Not available

EXTINGUISHING MEDIA
- Foam.
- Dry chemical powder.

FIRE FIGHTING
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.

When any large container (including road and rail tankers) is involved in a fire, consider evacuation by 800 metres in all directions.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS
- Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.

Combustion products include carbon monoxide (CO), carbon dioxide (CO2), other pyrolysis products typical of burning organic material.
May emit corrosive fumes.

FIRE INCOMPATIBILITY
- Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS
- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Control personal contact by using protective equipment.
- Use dry clean up procedures and avoid generating dust.
- Place in a suitable, labelled container for waste disposal.
- Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material.
- Check regularly for spills and leaks.

MAJOR SPILLS
- Clear area of personnel and move upwind.
- Alert Emergency Responders and tell them location and nature of hazard.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS
- Lined metal can, Lined metal pail/drum
- Plastic pail

For low viscosity materials
- Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.

STORAGE REQUIREMENTS
- Store in original containers.
- Keep containers securely sealed.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

<table>
<thead>
<tr>
<th>Source</th>
<th>Material</th>
<th>TWA ppm</th>
<th>TWA mg/m³</th>
<th>STEL ppm</th>
<th>STEL mg/m³</th>
<th>Peak ppm</th>
<th>Peak mg/m³</th>
<th>TWA F/CC</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada - Ontario Occupational Exposure Limits</td>
<td>p-tert-octylphenol (Particles Insoluble or Poorly Soluble) Not Otherwise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10 (I)</td>
</tr>
<tr>
<td>Canada - British Columbia Occupational Exposure Limits</td>
<td>p-tert-octylphenol (Particles Insoluble or Poorly Soluble Not Otherwise Classified (PNOC))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10 (N)</td>
</tr>
<tr>
<td>Canada - Ontario Occupational Exposure Limits</td>
<td>p-tert-octylphenol (Specified (PNOS) / Particules (insolubles ou peu solubles) non précisées par ailleurs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 (R)</td>
</tr>
<tr>
<td>US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants</td>
<td>p-tert-octylphenol (Particulates not otherwise regulated Respirable fraction)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>US - California Permissible Exposure Limits for Chemical Contaminants</td>
<td>p-tert-octylphenol (Particulates not otherwise regulated Respirable fraction)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 (n)</td>
</tr>
<tr>
<td>US - Oregon Permissible Exposure Limits (Z-1)</td>
<td>p-tert-octylphenol (Particulates not otherwise regulated (PNOR) (f) Total Dust)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

Bold print identifies substances for which the Oregon Permissible Exposure Limits (PELs) are different than the federal Limits. PNOR means "particles not otherwise regulated."
<table>
<thead>
<tr>
<th>Location</th>
<th>Substance Description</th>
<th>Exposure Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>US - Michigan</td>
<td>p-tert-octylphenol (Particulates not otherwise regulated, Respirable dust)</td>
<td>5</td>
</tr>
<tr>
<td>US - Oregon</td>
<td>p-tert-octylphenol (Particulates not otherwise regulated (PNOR) (f) Respirable Fraction)</td>
<td>5</td>
</tr>
<tr>
<td>US - Wyoming</td>
<td>p-tert-octylphenol (Particulates not otherwise regulated (PNOR)(f)-Respirable fraction)</td>
<td>5</td>
</tr>
<tr>
<td>Canada - PEI</td>
<td>p-tert-octylphenol (Particles (Insoluble or Poorly Soluble) [NOS] Inhalable particles)</td>
<td>10</td>
</tr>
</tbody>
</table>

PERSONAL PROTECTION

RESPIRATOR
- Particulate. (AS/NZS 1716 & 1715, EN 1432000 & 1492001, ANSI Z88 or national equivalent)

EYE
- Chemical goggles.
- Full face shield.

HANDS/FEET
Wear chemical protective gloves, eg. PVC.
NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:
- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity
Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. Contaminated gloves should be replaced. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

OTHER
- Overalls.
- PVC Apron.

ENGINEERING CONTROLS
- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES
Solid.
Does not mix with water.
Corrosive.

<table>
<thead>
<tr>
<th>State</th>
<th>Divided solid</th>
<th>Molecular Weight</th>
<th>206.32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting Range (°F)</td>
<td>174- 180</td>
<td>Viscosity</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Boiling Range (°F)</td>
<td>347 (70 mm Hg)</td>
<td>Solubility in water (g/L)</td>
<td>Partly miscible</td>
</tr>
<tr>
<td>Flash Point (°F)</td>
<td>Not Available</td>
<td>pH (1% solution)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Decomposition Temp (°F)</td>
<td>Not Available</td>
<td>pH (as supplied)</td>
<td>Not available</td>
</tr>
<tr>
<td>Autoignition Temp (°F)</td>
<td>Not available</td>
<td>Vapour Pressure (mmHg)</td>
<td>Negligible</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not available</td>
<td>Specific Gravity (water=1)</td>
<td>Not available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not available</td>
<td>Relative Vapor Density (air=1)</td>
<td>>1</td>
</tr>
<tr>
<td>Volatile Component (%vol)</td>
<td>Negligible</td>
<td>Evaporation Rate</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

APPEARANCE
Crystalline solid; does not mix well with water.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY
- Presence of incompatible materials.
- Product is considered stable.

STORAGE INCOMPATIBILITY
- Phenols are incompatible with strong reducing substances such as hydrides, nitrides, alkali metals, and sulfides.
- Avoid use of aluminium, copper and brass alloys in storage and process equipment.
- Heat is generated by the acid-base reaction between phenols and bases.
- Phenols are sulfonated very readily (for example, by concentrated sulfuric acid at room temperature), these reactions generate heat.
- Phenols are nitrated very rapidly, even by dilute nitric acid.
- Nitrated phenols often explode when heated. Many of them form metal salts that tend toward detonation by rather mild shock.
- Avoid reaction with oxidizing agents.
- Dangerous goods of other classes.
For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

p-tert-octylphenol

TOXICITY AND IRRITATION

P-TERT-OCTYLPHENOL

unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke’s edema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type.

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

for alkylphenolics category
The alkylphenolics may be divided into three groups.

Group I ortho-substituted mono-alkylphenols
Group II para-substituted mono-alkylphenols
Group III di- and tri-substituted mixed alkyl phenols

The subdivision of the category alkylphenols into ortho, para and the di/tri-substituted mixed members is supported by several published investigations. In assessing antimicrobial and antifouling activity of twenty-three alkylphenols, a significant difference was noted between para and ortho-substituted materials. In particular, biological activity was found to vary parabolically with increasing hydrophobicity of the para-substituent while introduction of a bulky substituent at the ortho-position resulted in a very significant decrease in antimicrobial, antifouling, and membrane-perturbation potency. Several alkylphenolic analogs of butylated hydroxytoluene (BHT) were examined for hepatotoxicity in mice depleted of hepatic glutathione. The structural requirement of both hepatic and pulmonary toxicity was a phenol ring having benzylc hydrogen atoms at the para position and an ortho-alkyl group(s) that moderately hinders the phenolic hydroxyl group. It is noteworthy that in this model, neither of the Group III members TTBP (2,4,6-tri-tert-butylphenol) nor 2,6-DTBP (2,6-di-tert-butylphenol) showed either hepatic or pulmonary toxicity. Lastly, important differences were observed in gene activation (recombinant yeast cell assay – Lac-Z reporter gene) between ortho-substituted and para-substituted alkylphenol.

Acute toxicity The acute (single-dose) toxicity of alkylphenols examined to date shows consistency, with LD50 values ranging from approximately 1000 mg/kg to over 2000 mg/kg. These data demonstrate a very low level of acute systemic toxicity and do not suggest any unique structural specificity, despite the general tendency for the chemicals to be, at least, irritants to skin.

Repeat dose toxicity The available studies for members drawn from the three groups range from 28-day and 90-day general toxicity studies, through developmental toxicity and reproductive/developmental screening, to multigeneration reproductive studies are available for some category members.

For the overall category of alkylphenols, the dosage at which the relatively mild general toxicity appears tends only to fall below 100 mg/kg/day with extended treatment, with an overall NOAEL for the category of approximately 20 mg/kg/day. No unusual and no apparent structurally unique toxicity is evident. Repeat dose studies on OTBP (o-tert-butylphenol; Group I) and PTBP (p-tert-butylphenol; Group II) suggest the forestomach to be the main organ affected. OTBP also appears to have a mild (though statistically significant) protective effect against benzo[a]pyrene induced forestomach tumors. Long-term treatment with high dietary dose levels of PTBP caused hyperplastic changes in the forestomach epithelium of rats and hamsters, a likely consequence of the irritancy of the material. The relevance of this for human hazard is doubtful, particularly since there is no analogous structure in humans to the forestomach of rodents.

There was no evidence of an effect on reproductive function at dosages up to 150 mg/kg. One reproductive
screening study reported increased 'breeding loss' and also reduced pup weight gain and survival in early lactation at 750 mg/kg/day. It is reasonable to assume that these effects were secondary to "severe toxic symptoms" reported in the dams at this dosage. Other than an indication of a very mildly oestrogenic effect of PNP (p-nonylphenol; Group II) at a high dose levels (200-300 mg/kg/day) no effect on development was seen in a multigeneration study.

By means of the classification method of Verhaar * all the alkylphenols would be classified as Type 2 compounds (polar narcotics). Narcosis, a non-specific mode of toxicity is caused by disruption (perturbation) of the cell membrane. The ability to induce narcosis is dependent on the hydrophobicity of the substance with biochemical activation or reaction involved. Such narcotic effects are also referred to as minimum or base-line toxicity. Polar narcotics such as the category phenols are usually characterised by having hydrogen bond donor activity and are thought to act by a similar mechanism to the inert, narcotic compounds but exhibit above base-line toxicity. In fact, a large number of alkylphenols have been evaluated as intravenous anesthetic agents. While the structure-activity relationships were found to be complex, the anesthetic potency and kinetics appeared to be a function of both the lipophilic character and the degree of steric hindrance exerted by ortho substituents. Less steric hindrance resulted in lower potency, while greater crowding led to complete loss of anesthetic activity and greater lipophilicity resulted in slower kinetics. These data support the notion that the alkylphenols behave as polar narcotics. In addition, the anaesthetic activity/potency differences seen with varying structure and placement of substituents strongly supports the division of alkylphenols category into the ortho, para, and di/tri-substituted groups (i.e. Group I, II and III, respectively).

Genotoxicity It reasonable to consider the mutagenic potential of all the alkylphenols together because only functional group is the phenolic, which is not a structural alert for mutagenicity. The data support this, since the results of genotoxicity testing are uniformly negative for all category substances examined.

CARCINOGEN

<table>
<thead>
<tr>
<th>VPVB_ (VERY~ US - Maine Chemicals of High Concern List</th>
<th>Carcinogen</th>
<th>CA Prop 65; IARC; NTP 11th ROC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBIT_ (PERS~ US - Maine Chemicals of High Concern List</td>
<td>Carcinogen</td>
<td></td>
</tr>
</tbody>
</table>

Section 12 - ECOLOGICAL INFORMATION

Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

This material and its container must be disposed of as hazardous waste.

Avoid release to the environment.

Refer to special instructions/ safety data sheets.

GESAMP/EHS COMPOSITE LIST - GESAMP Hazard Profiles

<table>
<thead>
<tr>
<th>Name / EHS TRN</th>
<th>A1a</th>
<th>A1b</th>
<th>A1</th>
<th>A2</th>
<th>B1</th>
<th>B2</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>E1</th>
<th>E2</th>
<th>E3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenol</td>
<td>112</td>
<td>566</td>
<td>1</td>
<td>2</td>
<td>R</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>(3)</td>
<td>3</td>
<td>3</td>
<td>NT</td>
<td>S</td>
<td>3</td>
</tr>
<tr>
<td>CAS: 140-66-9</td>
<td></td>
</tr>
</tbody>
</table>

Legend: EHS=EHS Number (EHS=GESAMP Working Group on the Evaluation of the Hazards of Harmful Substances Carried by Ships) NRT=Net Register Tonnage, A1a=Bioaccumulation log Pow, A1b=Bioaccumulation BCF, A1=Bioaccumulation, A2=Biodegradation, B1=Acute aquatic toxicity LC/ECIC50 (mg/l), B2=Chronic aquatic toxicity NOEC (mg/l), C1=Acute mammalian oral toxicity LD50 (mg/kg), C2=Acute mammalian dermal toxicity LD50 (mg/kg), C3=Acute mammalian inhalation toxicity LC50 (mg/kg), D1=Skin irritation & corrosion, D2=Eye irritation& corrosion, D3=Long-term health effects, E1=Tainting, E2=Physical effects on wildlife & benthic habitats, E3=Interference with coastal amenities. For column A2: R=Readily biodegradable, NR=Not readily biodegradable. For column D3: C=Carcinogen, M=Mutagenic, R=Reprotoxic, S=Sensitising, A=Aspiration hazard, T=Target organ
systemic toxicity, L=Lung injury, N=Neurotoxic, I=Immunotoxic. For column E1: NT=Not tainting (tested), T=Tainting test positive. For column E2: Fp=Persistent floater, F=Floater, S=Sinking substances. The numerical scales start from 0 (no hazard), while higher numbers reflect increasing hazard. (GESAMP/EHS Composite List of Hazard Profiles - Hazard evaluation of substances transported by ships)

Section 13 - DISPOSAL CONSIDERATIONS

US EPA Waste Number & Descriptions

A. General Product Information

Corrosivity characteristic: use EPA hazardous waste number D002 (waste code C)

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations. Puncture containers to prevent re-use and bury at an authorized landfill. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.

Section 14 - TRANSPORTATION INFORMATION

DOT:

<table>
<thead>
<tr>
<th>Symbols:</th>
<th>None</th>
<th>Hazard class or Division:</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification Numbers:</td>
<td>UN2430</td>
<td>PG:</td>
<td>III</td>
</tr>
<tr>
<td>Label Codes:</td>
<td>8</td>
<td>Special provisions:</td>
<td>IB8, IP3, T1, TP33</td>
</tr>
<tr>
<td>Packaging: Exceptions:</td>
<td>154</td>
<td>Packaging: Non-bulk:</td>
<td>213</td>
</tr>
</tbody>
</table>

- Packaging: Exceptions: 154
- Quantity limitations:
 - Passenger aircraft/rail: 25 kg

- Quantity Limitations: Cargo aircraft only: 100 kg
- Vessel stowage: Location: A

Vessel stowage: Other: None

Hazardous materials descriptions and proper shipping names:

Alkylphenols, solid, n.o.s. (including C2-C12 homologues)

Air Transport IATA:

<table>
<thead>
<tr>
<th>ICAO/IATA Class:</th>
<th>8</th>
<th>ICAO/IATA Subrisk:</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN/ID Number:</td>
<td>2430</td>
<td>Packing Group:</td>
<td>III</td>
</tr>
</tbody>
</table>
p-tert-octylphenol (CAS: 140-66-9) is found on the following regulatory lists:
"Canada Domestic Substances List (DSL)","Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (English)","OSPAR List of Chemicals for Priority Action","OSPAR List of Substances of Possible Concern","US EPA High Production Volume Program Chemical List","US EPA Master Testing List - Index I Chemicals Listed","US Food Additive Database","US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory","US TSCA Section 4 (e) - ITC Priority Testing List","US TSCA Section 8 (a) - Preliminary Assessment Information Rules (PAIR) - Reporting List","US TSCA Section 8 (d) - Health and Safety Data Reporting"

LIMITED EVIDENCE
- Inhalation and/or ingestion may produce health damage*.
- Cumulative effects may result following exposure*.
- May produce discomfort of the respiratory system*.
- May possibly affect fertility*.
* (limited evidence).

Denmark Advisory list for selfclassification of dangerous substances

<table>
<thead>
<tr>
<th>Substance</th>
<th>CAS</th>
<th>Suggested codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-tert-octylphenol</td>
<td>140-66-9</td>
<td>R43 N; R50/53</td>
</tr>
</tbody>
</table>

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be
determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

www.chemwatch.net

Issue Date: Nov-22-2009
Print Date: Nov-2-2011