Methyl acetate

SYNONYMS

C3H6O2, "Added Toshiba in Supplier 27/06/07 -MD"

(1-800-CHEMCALL) or call +613 9573 3112

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

RISK

Irritating to eyes. HARMFUL - May cause lung damage if swallowed. Highly flammable. Repeated exposure may cause skin dryness and cracking. Vapours may cause drowsiness and dizziness. Cumulative effects may result following exposure*. Inhalation and/or ingestion may produce health damage*. May produce discomfort of the respiratory system and skin*. * (limited evidence).

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

• Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733).

Accidental ingestion of the material may be damaging to the health of the individual.

Ingestion of large doses of methyl acetate may result in severe cramping, intoxication and depression of the central nervous system.

• Considered an unlikely route of entry in commercial/industrial environments. The liquid may produce gastrointestinal discomfort and may be harmful if swallowed. Ingestion may result in nausea, pain and vomiting. Vomit entering the lungs by aspiration may cause potentially lethal chemical pneumonitis.

EYE

• This material may produce eye irritation in some persons and produce eye damage 24 hours or more after instillation. Moderate inflammation may be expected with redness; conjunctivitis may occur with prolonged exposure.

• Over-exposure to methyl acetate vapour may result in a condition known as amylopia (dimming of vision) as a result of atrophy of the optic nerve. Methyl acetate may resemble methanol in this respect.

Eye irritation is strong but reversible within 7 days in a Draize eye test with rabbits (with mean scores for observations after 24, 48 and 72 hours of 1/1/1 for iridial irritation and of 2.7/2.3/3 for conjunctival oedema).

SKIN

• Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions.

Repeated exposure may cause skin cracking, flaking or drying following normal handling and use.

• There is some evidence to suggest that the material may cause moderate inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterised by redness, swelling and blistering.

Methyl acetate has proven to cause only weak skin irritation in humans and in rabbits (no oedema, erythema with maximum grade 1 reversible within 48 hours).

• Open cuts, abraded or irritated skin should not be exposed to this material.

Material on the skin evaporates rapidly and may cause tingling, chilling and even temporary numbress.

• Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

■ Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo.

■ Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.

• There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.

Shortness of breath and a irregular heartbeat may also occur as a result of exposure to methyl acetate fume.

Inhalation of methyl acetate causes severe headache and considerable somnolence in humans.

• Material is highly volatile and may quickly form a concentrated atmosphere in confined or unventilated areas. Vapour is heavier than air and may displace and replace air in breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure.

■ Inhalation of high concentrations of gas/vapour causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatigue and inco-ordination.

• The main effects of simple esters are irritation, stupor and insensibility. Headache, drowsiness, dizziness, coma and behavioural changes may occur. Respiratory symptoms may include irritation, shortness of breath, rapid breathing, throat inflammation, bronchitis, lung inflammation and pulmonary oedema, sometimes delayed. Nausea, vomiting, diarrhoea and cramps are observed. Liver and kidney damage may result from massive exposures.

CHRONIC HEALTH EFFECTS

Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following.

Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure.

Chronic effects of exposure to methyl acetate may be similar to those from methanol exposure because methyl acetate can be hydrolysed to yield methanol and acetic acid. Optic nerve damage is the predominant hazard.

Long-term exposure to methanol vapour, at concentrations exceeding 3000 ppm, may produce cumulative effects characterised by gastrointestinal disturbances (nausea, vomiting), headache, ringing in the ears, insomnia, trembling, unsteady gait, vertigo, conjunctivitis and clouded or double vision. Liver and/or kidney injury may also result. Some individuals show severe eye damage following prolonged exposure to 800 ppm of the vapour.

Section 3 - COMPOSITION /	INFORMATION ON INGREDIENTS	
NAME	CAS RN	%
methyl acetate	79-20-9	100

Section 4 - FIRST AID MEASURES

SWALLOWED

- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Seek medical advice.
- If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

EYE

If this product comes in contact with the eyes:

- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Seek medical attention without delay; if pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

If skin contact occurs:

- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

INHALED

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor.

NOTES TO PHYSICIAN

• Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. for simple esters:

BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- Monitor and treat, where necessary, for pulmonary oedema .
- Monitor and treat, where necessary, for shock.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution
 where patient is able to swallow, has a strong gag reflex and does not drool.

Give activated charcoal.

ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT

- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph.
- Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome.
- Consult a toxicologist as necessary.

BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994. For acute and short term repeated exposures to methanol:

- For acute and short term repeated exposures to methanol.
- Toxicity results from accumulation of formaldehyde/formic acid.
- Clinical signs are usually limited to CNS, eyes and GI tract Severe metabolic acidosis may produce dyspnea and profound systemic
 effects which may become intractable. All symptomatic patients should have arterial pH measured. Evaluate airway, breathing and
 circulation.
- Stabilise obtunded patients by giving naloxone, glucose and thiamine.
- Decontaminate with Ipecac or lavage for patients presenting 2 hours post-ingestion. Charcoal does not absorb well; the usefulness
 of cathartic is not established.
- Forced diuresis is not effective; haemodialysis is recommended where peak methanol levels exceed 50 mg/dL (this correlates with serum bicarbonate levels below 18 mEq/L).
- Ethanol, maintained at levels between 100 and 150 mg/dL, inhibits formation of toxic metabolites and may be indicated when peak methanol levels exceed 20 mg/dL. An intravenous solution of ethanol in D5W is optimal.
- Folate, as leucovorin, may increase the oxidative removal of formic acid. 4-methylpyrazole may be an effective adjunct in the treatment. 8.Phenytoin may be preferable to diazepam for controlling seizure.

[Ellenhorn Barceloux: Medical Toxicology]

Determinant	Index	Sampling Time	Comment
1. Methanol in urine	15 mg/l	End of shift	B, NS
2. Formic acid in urine	80 mg/gm creatinine	Before the shift at end of workweek	B, NS

B: Background levels occur in specimens collected from subjects NOT exposed. NS: Non-specific determinant - observed following exposure to other materials. Metabolites include methanol.

	Section 5 - FIRE FIGHTING MEASURES
Vapor Pressure (mmHg):	169.964 @ 20 C
Upper Explosive Limit (%):	16
Specific Gravity (water=1):	0.93
Lower Explosive Limit (%):	3.1

EXTINGUISHING MEDIA

Alcohol stable foam.

- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

FIRE FIGHTING

- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.

- Consider evacuation (or protect in place).
- Fight fire from a safe distance, with adequate cover.
- If safe, switch off electrical equipment until vapour fire hazard removed.
- Use water delivered as a fine spray to control the fire and cool adjacent area.
- Avoid spraying water onto liquid pools.
- Do not approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.

When any large container (including road and rail tankers) is involved in a fire,

consider evacuation by 1000 metres in all directions.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Liquid and vapour are highly flammable.
- Severe fire hazard when exposed to heat, flame and/or oxidisers.
- Vapour may travel a considerable distance to source of ignition.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- On combustion, may emit toxic fumes of carbon monoxide (CO).

Combustion products include: carbon dioxide (CO2), other pyrolysis products typical of burning organic material.

Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions.

FIRE INCOMPATIBILITY

• Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- Control personal contact by using protective equipment.
- Contain and absorb small quantities with vermiculite or other absorbent material.
- Wipe up.
- Collect residues in a flammable waste container.

MAJOR SPILLS

Chemical Class: ester and ethers

For release onto land: recommended sorbents listed in order of priority.

SORBENT TYPE	RANK	APPLICATION	COLLECTION	LIMITATIONS
cross-linked polymer - particulate	1	shovel	shovel	R, W, SS
cross-linked polymer - pillow	1	throw	pitchfork	R, DGC, RT
sorbent clay - particulate	2	shovel	shovel	R,I, P
wood fiber - particulate	3	shovel	shovel	R, W, P, DGC
wood fiber - pillow	3	throw	pitchfork	R, P, DGC, RT
treated wood fiber - pillow LAND SPILL - MEDIUM	3	throw	pitchfork	DGC, RT
cross-linked polymer - particulate	1	blower	skiploader	R,W, SS
cross-linked polymer - pillow	2	throw	skiploader	R, DGC, RT
sorbent clay - particulate	3	blower	skiploader	R, I, P
polypropylene - particulate	3	blower	skiploader	W, SS, DGC
expanded mineral - particulate	4	blower	skiploader	R, I, W, P, DGC
wood fiber - particulate	4	blower	skiploader	R, W, P, DGC

Legend

DGC: Not effective where ground cover is dense

- R; Not reusable
- I: Not incinerable

P: Effectiveness reduced when rainy

- RT:Not effective where terrain is rugged
- SS: Not for use within environmentally sensitive sites
- W: Effectiveness reduced when windy

Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control;

- R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988.
- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation (or protect in place).
- No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.
- Water spray or fog may be used to disperse /absorb vapour.
- Contain spill with sand, earth or vermiculite.
- Use only spark-free shovels and explosion proof equipment.
- Collect recoverable product into labelled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite.
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Containers, even those that have been emptied, may contain explosive vapours.
- Do NOT cut, drill, grind, weld or perform similar operations on or near containers.

Contains low boiling substance:

Storage in sealed containers may result in pressure buildup causing violent rupture of containers not rated appropriately.

- Check for bulging containers.
- Vent periodically
- Always release caps or seals slowly to ensure slow dissipation of vapours
- DO NOT allow clothing wet with material to stay in contact with skin
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights, heat or ignition sources.
- When handling, DO NOT eat, drink or smoke.
- Vapour may ignite on pumping or pouring due to static electricity.
- DO NOT use plastic buckets.
- Earth and secure metal containers when dispensing or pouring product.
- Use spark-free tools when handling.
- Avoid contact with incompatible materials.
- Keep containers securely sealed.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.

RECOMMENDED STORAGE METHODS

- Glass container is suitable for laboratory quantities
- Packing as supplied by manufacturer.
- Plastic containers may only be used if approved for flammable liquid.
- Check that containers are clearly labelled and free from leaks.
- For low viscosity materials (i) : Drums and jerry cans must be of the non-removable head type. (ii) : Where a can is to be used as an

inner package, the can must have a screwed enclosure.

- For materials with a viscosity of at least 2680 cSt. (23 deg. C)
- For manufactured product having a viscosity of at least 250 cSt. (23 deg. C)
- Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C)
- (i) : Removable head packaging;
- (ii) : Cans with friction closures and
- (iii) : low pressure tubes and cartridges may be used.
- Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages
- In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

STORAGE REQUIREMENTS

- Store in original containers in approved flame-proof area.
- No smoking, naked lights, heat or ignition sources.
- DO NOT store in pits, depressions, basements or areas where vapours may be trapped.
- Keep containers securely sealed.
- Store away from incompatible materials in a cool, dry well ventilated area.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m³	STEL ppm	STEL mg/m³	Peak ppm	Peak mg/m³	TWA F/CC	Notes
US ACGIH Threshold Limit Values (TLV)	methyl acetate (Methyl acetate)	200		250					TLV® Basis: Headache; eye & URT irr; ocular nerve dam

PERSONAL PROTECTION

RESPIRATOR

• Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) EYE

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

HANDS/FEET

- Wear chemical protective gloves, eg. PVC.
- Wear safety footwear or safety gumboots, eg. Rubber
- For esters:
- Do NOT use natural rubber, butyl rubber, EPDM or polystyrene-containing materials.
- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:
- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

OTHER

- Overalls.
- PVC Apron.
- PVC protective suit may be required if exposure severe.
- Eyewash unit.
- Ensure there is ready access to a safety shower.
- Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity.
- For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets), non sparking safety footwear.

ENGINEERING CONTROLS

■ Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) Within each range the appropriate value depends on:	1-2.5 m/s (200-500 f/min.)
Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Liquid. Mixes with water.

State	Liquid	Molecular Weight	74.08
Melting Range (°F)	-144	Viscosity	Not Available
Boiling Range (°F)	135	Solubility in water (g/L)	Miscible
Flash Point (°F)	15	pH (1% solution)	Not available.
Decomposition Temp (°F)	Not Available	pH (as supplied)	Not applicable
Autoignition Temp (°F)	934	Vapor Pressure (mmHg)	169.964 @ 20 C
Upper Explosive Limit (%)	16	Specific Gravity (water=1)	0.93
Lower Explosive Limit (%)	3.1	Relative Vapour Density (air=1)	2.6
Volatile Component (%vol)	>99%	Evaporation Rate	Not available
Gas group	IIA		
Material	Value		
METHYL ACETATE:			
log Kow (Sangster 1997):	0.18		

APPEARANCE

Volatile liquid with fruity odour detectable at 200 ppm. This odour can be used as a hazard warning. Miscible with water (32g/100g water @ 20 C) and common organic solvents.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerisation will not occur.

STORAGE INCOMPATIBILITY

Methyl acetate:

- reacts violently with oxidisers
- decomposes on contact with acid or bases forming methanol
- is incompatible with nitrates
- attacks some plastics
- may generate electrostatic charges
- Esters react with acids to liberate heat along with alcohols and acids.
- Strong oxidising acids may cause a vigorous reaction with esters that is sufficiently exothermic to ignite the reaction products.
- Heat is also generated by the interaction of esters with caustic solutions.
- Flammable hydrogen is generated by mixing esters with alkali metals and hydrides.
- Esters may be incompatible with aliphatic amines and nitrates.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

methyl acetate

TOXICITY AND IRRITATION

METHYL ACETATE:

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

ΤΟΧΙΟΙΤΥ	IRRITATION
Inhalation (human) TCLo: 15000 mg/m ³	Skin (rabbit): 500 mg/24h - Mild
Inhalation (rat) LCLo: 32000 ppm/4h	Skin (rabbit): 20 mg/24h - Mild

Eye (rabbit):100 mg/24h-Moderate

■ for methyl acetate

Acute toxicity:

Methyl acetate is a water soluble substance with high volatility. The substance has narcotic properties if inhaled at concentrations of 34 mg/l (mice) and 56 mg/l (cats) with a short duration of the narcotic action after cessation of exposure.

Methyl acetate is absorbed via the lungs in animals and humans, absorption via the oral route is demonstrated. After absorption the substance undergoes hydrolysis to methanol and acetic acid.

From the available in vitro data it may be anticipated that the half-life of methyl acetate in blood ranges between 2 and 4 hours. Immediately after stopping a 6-hour inhalation exposure to rats (2,000 ppm (6,040 mg/m3)) blood concentrations below the limit of quantification (less than 4.6 mg/l) were determined indicating rapid hydrolysis and high clearance of the substance. It appears from these data that the systemic availability of methyl acetate is low.

The main metabolite is methanol which itself is metabolised to formic acid. Formate is introduced into C1-metabolism after activation by reacting with tetrahydrofolate. Humans as well as monkeys are more sensitive to methanol poisoning compared with rats because of a lower tetrahydrofolate content in liver. Therefore interspecies differences in the metabolism were considered mainly of concern at dose levels leading to acute toxicity. Thus rat is a useful model to indicate subacute/subchronic toxic effects below sublethal dosages.

Assessment of the available animal toxicology data indicates that methyl acetate is of low acute toxicity (rats LD50 oral: 6,482 mg/kg bw, dermal: >2,000 mg/kg bw, LC50 inhalative >49 mg/l/4h). After oral application and after inhalation of substance vapours, animals showed narcotic symptoms, spasms, dyspnea and vomiting; inhalation of vapours in addition caused irritation of eyes and upper respiratory tract. The narcotic concentration for mice starts at 34 mg/l and for cats with 56 mg/l inhaled.

In humans, accidental inhalation of vapours of methyl acetate caused severe headache and considerable somnolence.

Methyl acetate has proven to cause only weak skin irritation in humans and in rabbits (no oedema, erythema with maximum grade 1 reversible within 48 hours). Eye irritation however, was strong but reversible within 7 days in a Draize eye test with rabbits. Exposure to methyl acetate vapours causes irritation to eyes and respiratory tract of humans.

Taking into account the long experience with human exposure to the substance, methyl acetate is not supposed to exhibit skin sensitising properties although no relevant human or animal date are available.

Sensitisation:

Relevant human data are not available. In a maximisation test with 25 volunteers no sensitisation was observed after exposure to 10% methyl acetate in petrolatum (Kligman, 1976). Taking into account the long experience with human exposure to the substance, and the absence of any reports on contact allergy in exposed persons, methyl acetate is not expected to exhibit skin sensitising properties, especially since the substance is hydrolysed in contact with water by non-specific tissue esterases to methanol and acetic acid. For these substances a skin sensitisation potential is either absent (methanol, or restricted to a few cases (acetic acid).

Repeat dose toxicity:

Overall, reliable experimental animal data on the local and systemic effects after repeated administration of methyl acetate are restricted to the inhalation exposure. After nose-only inhalation during a 28-day treatment period, methyl acetate induced degeneration/necrosis of the rat olfactory mucosa at a concentration of 2,000 ppm on 6 hours/day, 5 days/week (6,040 mg/m3). There was some concern on minimal effects of systemic toxicity at this concentration diureses, minimal liver cell dysfunction, adrenal weight increase, and reduced serum cholesterol concentrations).

There are no adequate data from human experience on repeated or prolonged exposure.

Based on general experience that acute and long-time or repeated exposure to methyl acetate defats skin and cause dryness and cracking of the skin.

No-observed-adverse-effect-level (NOAEL)

Inhalation route

The NOAEC for local effects on the respiratory tract derived from an accurate 28-day inhalation study in rats was 350 ppm (1,057 mg/m3).

The NOAEC for systemic effects also derived from a 28-day inhalation study was 350 ppm (1,057 mg/m3).

Mutagenicity

Methyl acetate is negative in a bacterial mutation test and a rat bone marrow micronucleus test. Furthermore, the hydrolysis products methanol and acetic acid do not reveal evidence for a mutagenic potential. There is no concern with respect to mutagenicity. Methyl acetate should not be classified as a mutagen.

Reproductive toxicity:

There are no data on reproductive toxicity of methyl acetate. However, due to the rapid hydrolysis of this compound it is justified to base hazard assessment with respect to reproduction on the toxicological properties of the immediate metabolites. Concerning the metabolites of methyl acetate, acetic acid appears to be of less significance, since there are no indications of a foetotoxic or teratogenic potential, whereas for methanol some embryo-/foetotoxic and teratogenic effects were demonstrated in rodents, however at relatively high concentrations, respectively maternal toxic concentrations only. A NOEC/fertility for methanol of 1,000 ppm (1,300 mg methanol/m3) was derived from a 2-generation inhalation study in rats. With the assumption that methyl acetate is immediately degraded to methanol at a molar ratio of 1,000 ppm (1,300 mg methanol/m3) was derived from toxicity for methanol of 1,000 ppm (1,300 mg methanol/m3) was derived from toxicity for methanol of 1,000 ppm (1,300 mg methanol/m3) was derived from toxicity for methanol of 1,000 ppm (1,300 mg methanol/m3) was derived from toxicity for methanol of 1,000 ppm (1,300 mg methanol/m3) was derived from two studies in mice and rats from intermittent as well as from continuous inhalatory exposure, which can be converted to a NOAEC/developmental toxicity of about 3,000 mg methyl acetate/m3.

The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

CARCINOGEN

methyl acetate US - Rhode Island Hazardous Substance List	IARC
---	------

Section 12 - ECOLOGICAL INFORMATION

This material and its container must be disposed of as hazardous waste.

Ecotoxicity

Ingredient					Persistence: Water/Soil			I	Persistence: Air			Bioaccumulation			Mob	Mobility	
methyl aceta	te				LC	W			No Data	Availat	ole	LOW			HIGI	4	
GESAMP/E	EHS CO	ОМРО	SITE	LIST -	GESA	MP H	azard	Profil	es								
Name / EHS Cas No / RTECS No	TRN	A1a	A1b	A1	A2	B1	B2	C1	C2	C3	D1	D2	D3	E1	E2	E3	
<u></u>																	
Methyl 954 acetate / CAS:79-	438	0		0	R	1	NI	0	0	0	1	2			DE	2	

²⁰⁻⁹

Legend: EHS=EHS Number (EHS=GESAMP Working Group on the Evaluation of the Hazards of Harmful Substances Carried by Ships) NRT=Net Register Tonnage, A1a=Bioaccumulation log Pow, A1b=Bioaccumulation BCF, A1=Bioaccumulation, A2=Biodegradation, B1=Acuteaquatic toxicity LC/ECIC50 (mg/l), B2=Chronic aquatic toxicity NOEC (mg/l), C1=Acute mammalian oral toxicity LD50 (mg/kg), C2=Acutemammalian dermal toxicity LD50 (mg/kg), C3=Acute mammalian inhalation toxicity LC50 (mg/kg), D1=Skin irritation & corrosion, D2=Eye irritation& corrosion, D3=Long-term health effects, E1=Tainting, E2=Physical effects on wildlife & benthic habitats, E3=Interference with coastal amenities, For column A2: R=Readily biodegradable, NR=Not readily biodegradable. For column D3: C=Carcinogen, M=Mutagenic, R=Reprotoxic, S=Sensitising, A=Aspiration hazard, T=Target organ systemic toxicity, L=Lunginjury, N=Neurotoxic, I=Immunotoxic. For column E1: NT=Not tainting (tested), T=Tainting test positive. For column E2: Fp=Persistent floater, F=Floater, S=Sinking substances. The numerical scales start from 0 (no hazard), while higher numbers reflect increasing hazard. (GESAMP/EHS Composite List of Hazard Profiles - Hazard evaluation of substances transported by ships)

Section 13 - DISPOSAL CONSIDERATIONS

US EPA Waste Number & Descriptions

A. General Product Information

Ignitability characteristic: use EPA hazardous waste number D001 (waste code I)

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licenced to accept chemical and / or pharmaceutical wastes or Incineration in a licenced apparatus (after admixture with suitable combustible material).
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

DOT:

Symbols:	None	Hazard class or Division:	3
Identification Numbers:	UN1231	PG:	II
Label Codes:	3	Special provisions:	IB2, T4, TP1
Packaging: Exceptions:	150	Packaging: Non-bulk:	202
Packaging: Exceptions:	150	Quantity limitations: Passenger aircraft/rail:	5 L
Quantity Limitations: Cargo aircraft only:	60 L	Vessel stowage: Location:	В
Vessel stowage: Other: Hazardous materials descriptions Methyl acetate Air Transport IATA:	None and proper shipping names:		
ICAO/IATA Class:	3	ICAO/IATA Subrisk:	None
UN/ID Number:	1231	Packing Group:	II
Special provisions:	None		
Cargo Only			
Packing Instructions:	364	Maximum Qty/Pack:	60 L
Passenger and Cargo		Passenger and Cargo	
Packing Instructions:	353	Maximum Qty/Pack:	5 L
Passenger and Cargo Limited Quantity		Passenger and Cargo Limited Quantity	
Packing Instructions:	Y341	Maximum Qty/Pack:	1 L
Shipping name:METHYL ACETAT Maritime Transport IMDG:	Ē		
IMDG Class:	3	IMDG Subrisk:	None
UN Number:	1231	Packing Group:	II
EMS Number:	F-E,S-D	Special provisions:	None
Limited Quantities: Shipping name:METHYL ACETAT	1 L E		

Section 15 - REGULATORY INFORMATION

methyl acetate (CAS: 79-20-9) is found on the following regulatory lists;

"Canada - Alberta Occupational Exposure Limits", "Canada - British Columbia Occupational Exposure Limits", "Canada - Northwest Territories Occupational Exposure Limits (English)", "Canada - Nova Scotia Occupational Exposure Limits", "Canada - Prince Edward Island Occupational Exposure Limits", "Canada - Quebec Permissible Exposure Values for Airborne Contaminants (English)", "Canada -Saskatchewan Industrial Hazardous Substances", "Canada - Saskatchewan Occupational Health and Safety Regulations -Contamination Limits", "Canada - Yukon Permissible Concentrations for Airborne Contaminant Substances", "Canada CEPA Environmental Registry Substance Lists - Other DSL substances that are priorities for human health (English)", "Canada Ingredient Disclosure List (SOR/88-64)", "Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (English)", "GESAMP/EHS Composite List - GESAMP Hazard Profiles", "IMO IBC Code Chapter 17: Summary of minimum requirements", "IMO MARPOL 73/78 (Annex II) - List of Other Liquid Substances", "International Fragrance Association (IFRA) Survey: Transparency List", "OECD List of High Production Volume (HPV) Chemicals", "OSPAR National List of Candidates for Substitution Norway", "US - Alaska Limits for Air Contaminants", "US - California Occupational Safety and Health Regulations (CAL/OSHA) -Hazardous Substances List", "US - California Permissible Exposure Limits for Chemical Contaminants", "US - Connecticut Hazardous

Air Pollutants", "US - Hawaii Air Contaminant Limits", "US - Idaho - Limits for Air Contaminants", "US - Massachusetts Oil & Hazardous Material List", "US - Michigan Exposure Limits for Air Contaminants", "US - Minnesota Hazardous Substance List", "US - Minnesota Permissible Exposure Limits (PELs)", "US - New Jersey Right to Know Hazardous Substances (English)", "US - North Dakota Air Pollutants - Guideline Concentrations", "US - Oregon Permissible Exposure Limits (Z-1)", "US - Pennsylvania - Hazardous Substance List", "US - Rhode Island Hazardous Substance List", "US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants", "US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants", "US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants", "US - Washington Permissible exposure limits of air contaminants", "US -Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants", "US ACGIH Threshold Limit Values (TLV)", "US CAA (Clean Air Act) - HON Rule - Organic HAPs (Hazardous Air Pollutants)", "US Department of Transportation (DOT), Hazardous Material Table", "US DOE Temporary Emergency Exposure Limits (TEELs)", "US DOT Coast Guard Bulk Hazardous Materials - List of Flammable and Combustible Bulk Liquid Cargoes", "US EPA High Production Volume Program Chemical List", "US EPA Master Testing List - Index I Chemicals Listed", "US FDA Everything Added to Food in the United States (EAFUS)", "US FDA Indirect Food Additives: Adhesives and Components of Coatings - Substances for Use Only as Components of Adhesives - Adhesives", "US FMA Air Freshener Fragrance Ingredient Survey Results", "US NIOSH Recommended Exposure Limits (RELs)", "US OSHA Permissible Exposure Levels (PELs) - Table Z1", "US Postal Service (USPS) Hazardous Materials Table: Postal Service Mailability Guide", "US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory", "US TSCA Section 12(b) - List of Chemical Substances Subject to Export Notification Requirements", "US TSCA Section 4/12 (b) - Sunset Date/Status", "US TSCA Section 8 (a) - Preliminary Assessment Information Rules (PAIR) - Reporting List", "US TSCA Section 8 (d) - Health and Safety Data Reporting"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

Inhalation and/or ingestion may produce health damage*.

- Cumulative effects may result following exposure*.
- May produce discomfort of the respiratory system and skin*.

* (limited evidence).

• Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:

www.chemwatch.net/references.

• The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

■ For detailed advice on Personal Protective Equipment, refer to the following U.S. Regulations and Standards:

OSHA Standards - 29 CFR:

1910.132 - Personal Protective Equipment - General requirements

1910.133 - Eye and face protection

1910.134 - Respiratory Protection

1910.136 - Occupational foot protection

1910.138 - Hand Protection Eye and face protection - ANSI Z87.1

Eye and face protection - ANS Foot protection - ANSI Z41

Respirators must be NIOSH approved.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700. www.Chemwatch.net

Issue Date: Apr-7-2011 Print Date: Apr-3-2012